top of page

Unveiling the cancer magnet: vertebral stem cells and spinal tumour metastasis

Last updated:

07/04/25, 14:49

Published:

24/04/25, 07:00

Unlocking the mystery of spinal disorders and paving the way for targeted therapies

Introduction


Researchers at Weill Cornell Medicine have discovered that the vertebral bones in the spine contain a unique type of stem cell that secretes a protein-promoting tumour metastasis. This protein, called MFGE8, plays a significant role in attracting tumours to the spine, making it more susceptible to metastasis when compared to other bones in the body.

 

A new line of research on spinal disorders


This groundbreaking study, published in the journal Nature, sheds light on the mechanisms behind the preference for solid tumours to spread to the spine. The findings open up a new line of research on spinal disorders, potentially leading to a better understanding and treatment of bone diseases involving the spine.

 

Identifying vertebral stem cells


The researchers began their study by isolating skeletal stem cells, which are responsible for bone and cartilage formation, from various bones in lab mice. Through gene activity analysis, they identified a distinct set of markers for vertebral stem cells. Further experiments in mice and lab-dish cell culture systems confirmed the functional roles of these stem cells in forming spinal bone.

 

Unravelling the mystery of spinal tropism


Previous theories attributed the spine's susceptibility to metastasis to patterns of blood flow. However, the study's findings challenged this long-standing belief. Animal models reproduced the phenomenon of spinal tropism, but the researchers discovered that blood flow was not the sole explanation. Instead, they found evidence pointing towards vertebral stem cells as the possible culprits.

 

The role of MFGE8


The researchers discovered that spinal tropism is largely a result of the protein MFGE8, which vertebral stem cells secrete in greater quantities than other bone stem cells. Removing vertebral stem cells eliminated the difference in metastasis rates between spine bones and other long bones.

 

Implications for cancer patients


These findings have significant implications for cancer patients, particularly those at risk of spinal metastasis. The researchers are now exploring methods to block the activity of MFGE8, aiming to reduce the risk of tumour spread to the spine. By understanding the distinctive properties of vertebral stem cells, researchers hope to develop targeted treatments for spinal disorders.

 

A new frontier in orthopaedics


According to study senior author Matthew Greenblatt, the identification of these unique stem cells opens up a new subdiscipline in orthopaedics called spinal orthopaedics. Many conditions in this clinical category may be attributed to the properties of vertebral stem cells. Further research in spinal orthopaedics is needed to understand how these distinct properties of vertebral stem cells contribute to spinal disorders. The discovery of MFGE8, a protein secreted in higher amounts by vertebral stem cells, has shed light on the mechanism behind the preferential spread of tumours to the spine. By investigating methods to block MFGE8, researchers hope to reduce the risk of spinal metastasis in cancer patients. Additionally, the study findings highlight the importance of understanding the role of vertebral stem cells in bone diseases that primarily affect the spine. This new line of research may provide insights into the development of novel treatments for spinal disorders.

 

Conclusion


In conclusion, the study by researchers at Weill Cornell Medicine has shown that vertebral bones, which make up the spine, contain a particular type of stem cell that secretes a protein known as MFGE8. This protein plays a significant role in promoting tumour metastases, explaining why solid tumours often spread to the spine. The findings have opened up new avenues of research in understanding spinal disorders and may lead to the development of strategies for reducing the risk of spinal metastasis in cancer patients. Overall, this study highlights the importance of vertebral stem cells in contributing to spinal disorders and emphasises the need for further investigation in this field.


Written by Sara Maria Majernikova


Related articles: Cancer metastasis / Stem cells



REFERENCE


Sun, J., Hu, L., Bok, S. et al. A vertebral skeletal stem cell lineage driving metastasis. Nature 621, 602–609 (2023). https://doi.org/10.1038/s41586-023-06519-1

Project Gallery

bottom of page