top of page

Quantum Chemistry

Last updated:

24/02/25, 11:29

Published:

06/02/25, 08:00

Exploring the microscopic world of molecules

Quantum chemistry provides a glimpse into the strange and fascinating world of molecules and atoms, where the principles of traditional chemistry and physics no longer apply. While classical chemistry can explain molecular interactions and bonding, it cannot fully account for particles' unusual, frequently contradictory behaviour at the atomic and subatomic levels. Quantum mechanics provides scientists with a powerful framework for understanding the complicated behaviour of electrons and nuclei in molecules.


The basics of quantum chemistry


The notion of wave-particle duality, which states that particles, such as electrons, act not just like objects with mass but also like waves, is central to quantum chemistry. Because the exact position and momentum of an electron cannot be known at the same time (according to the Heisenberg Uncertainty Principle), probability distributions are used to describe electrons rather than accurate orbits.


These distributions are represented by mathematical functions known as wave functions, which describe the probability of finding an electron in a specific location surrounding the nucleus. This fundamentally affects our understanding of chemical bonding. Instead of conceiving a bond as a solid connection between two atoms, quantum chemistry defines it as the overlap of electron wave functions, which can result in a variety of molecular topologies depending on their energy levels.


Quantum mechanics and bonding theories


Quantum mechanics has fundamentally altered our knowledge of chemical bonding. The classic Lewis structure model, which explains bonding as the sharing or transfer of electrons, is effective for simple molecules but fails to convey the complexities of real-world interactions. In contrast, quantum chemistry introduces the concept of molecular orbitals.


In molecular orbital theory, electrons are not limited to individual atoms but can spread across a molecule in molecular orbitals, which are combinations of atomic orbitals from the participating atoms. These molecular orbitals provide a more detailed explanation for bonding, especially in compounds that do not match simple bonding models, such as delocalised systems like benzene or metals. For example, quantum chemistry explains why oxygen is paramagnetic (it possesses unpaired electrons), a characteristic that classical bonding theories cannot explain.


Quantum chemistry and quantum computing


One of the most interesting frontiers in quantum chemistry is its application to the development of quantum computers. Traditional computers, despite their enormous processing power, struggle to model the complicated behaviour of molecules, particularly large ones. This is because simulating molecules at the quantum level necessitates tracking all conceivable interactions between electrons and nuclei, which can quickly become computationally challenging.  


Quantum computers use fundamentally different ideas. They employ qubits, which, unlike classical bits, can exist in a state of both 0 and 1. This enables quantum computers to execute several calculations concurrently and manage the complexity of molecular systems considerably more effectively.


This could lead to advancements in quantum chemistry, such as drug discovery, where precisely modelling molecular interactions is critical. Instead of depending on trial and error, scientists may utilise quantum computers to model how possible pharmaceuticals interact with biological molecules at the atomic level, thereby speeding up the creation of novel therapies. Similarly, quantum chemistry could help in the development of novel materials with desirable qualities, such as stronger alloys and more efficient energy storage devices.


Why quantum chemistry matters


The consequences of quantum chemistry go well beyond the lab. Understanding molecular behaviour at its most fundamental level allows us to create new technologies and materials that have an impact on everyday life. Nanotechnology, for example, relies largely on quantum principles to generate innovative materials with applications in medicine, electronics, and clean energy. Catalysis, the technique of speeding up reactions, also benefits from quantum chemistry insights, making industrial operations more efficient, such as cleaner fuel generation and more effective environmental remediation.


Furthermore, quantum chemistry provides insights into biological processes. Enzymes, the proteins that catalyse processes in living organisms, work with a precision that frequently defies standard chemistry. Tunnelling, quantum phenomena in which particles slip past energy barriers, helps to explain these extraordinarily efficient biological processes.


In brief, quantum chemistry provides the fundamental understanding required to push the limits of chemistry and physics by exposing how molecules interact and react in ways that traditional theories cannot fully explain. Quantum chemistry has the potential to radically alter our understanding of the microscopic world, whether through theoretical models, practical applications, or future technology advancements. 


Written by Laura K


Related articles: Quantum computing / Topology

Project Gallery

bottom of page