Search Index
268 items found
- Genetics | Scientia News
Genetics Articles Read articles delving into the universal genetic code: from CRISPR-Cas9 and epigenetics, to AI diagnosis, schizophrenia, and ancestry. You may also like: Biology The CRISPR- CAS9 system Who were the Nobel Prize winners of Chemistry in 2020? What did they discover? Micro-chimerism, and George Floyd's death A Publett collaboration Schizophrenia Complex disease series: the influence of the environment on complex diseases. Article #1 Genetically-engineered bacteria decompose plastic A solution to plastic pollution Gene therapy by rAAVs rAAVs- recombinant adeno-associated viruses An introduction to epigenetics Interactions between genes and the environment Are aliens on Earth? Applications of ancient DNA analysis New horizons in Alzheimer's Reaching new potential in research The Y chromosome unveiled A remarkable discovery Decoding p53 A fundamental tumour supressor protein Epigenetics and queen bees What distinguishes queen bees from worker bees? Genetics of excessive smoking and drinking What are their contribution? SNPs and haplogroups Solving the mystery of ancestry Germline gene therapy A Scientia News Biology and Genetics collaboration Chimeras A genetic phenomenon Unfolding prion diseases What happens when proteins don't fold properly? Diagnosing genetic diseases with AI The advancements made by AI in diagnosis Breaking down Tay-Sachs A rare inherited disease caused by a missing enzyme Genetics of ageing and longevity What genes and transcription factors are involved in these processes?
- Immunology | Scientia News
Immunology Articles How diseases start and spread, the body’s defence system, vaccines, policies, and public opinion: unravel the maze of infection and immunity with these articles. You may also like: Biology , Medicine , Neuroscience , Chemistry COVID-19 misconceptions Common misconceptions during the COVID-19 pandemic Glossary of COVID-19 terms Key terms used during the COVID-19 pandemic A vaccine for malaria? A new hope for a vaccine for malaria The world vs. the next pandemic Can we see it coming? What steps do we need to take? Are pandemics becoming more severe? Arguments for and against Natural substances And how they can tackle infectious diseases A treatment for HIV? Can the CRISPR-Cas9 system be used as a potential treatment? The mast cell Key cells in the immune system Origins of COVID -19 How COVID-19 caused a pandemic Mechanisms of pathogen invasion How pathogens avoid detection by the immune system Astronauts in space How does little gravity affect the immune system?
- A-level resources | Scientia News
A-levels Are you a student currently studying A-levels, or looking to choose them in the near future? Read below for tips and guidance! You may also like: IB resources , University prep and Extra resources What are A-levels? Jump to resources A-levels, short for Advanced Level qualifications, are a widely recognized and highly regarded educational program typically taken by students in the United Kingdom (UK) and some other countries. They are usually studied in the final two years of secondary education, typically between the ages of 16 and 18. A-levels offer students the opportunity to specialize in specific subjects of their choice. Students typically choose three or four subjects to study, although this may vary depending on the educational institution. The subjects available can be diverse, covering areas such as sciences, humanities, social sciences, languages, and arts. How are A-levels graded? The A-level grading system is based on a letter grade scale in the UK. Here's an overview of the A-level grading system: Grades: A* (pronounced "A-star"): The highest grade achievable, demonstrating exceptional performance. A: Excellent performance, indicating a strong understanding of the subject. B: Very good performance, showing a solid grasp of the subject. C: Good performance, representing a satisfactory level of understanding. D: Fair performance, indicating a basic understanding of the subject. E: Marginal performance, showing a limited understanding of the subject. U: Ungraded, indicating that the student did not meet the minimum requirements to receive a grade. What are the benefits of studying A-level? A-levels provide students with a variety of advantages, such as a solid academic foundation for further education, the chance to focus on interest-specific areas, and flexibility in planning their course of study. Transferable abilities like critical thinking, problem-solving, and independent research are developed in A-levels, improving both prospects for entrance to universities and future employment opportunities. These widely respected credentials encourage intellectual vigour, intellectual curiosity, and a love of lifelong study. A-levels provide students with a strong foundation for success in higher education and a variety of career pathways thanks to their academic rigour and global renown. Resources for revision Web sites to hel p M ath s / Maths and Further Maths Che mistry / Chemrevise / Chemguide Biology / Qui zzes Physics Computer Science topic-by-topic Teach Computer Science All subjects / Seneca Learning / Save My Exams YouTube channels to hel p Chemistry- Allery Chemistry and Eliot Rintoul Past p apers Biology, Chemistry, Physics, Maths Textbooks (depend on exam board) CGP range for Bio, Chem, Phys, and Maths- exam practice workbooks
- Neuroscience Articles 2 | Scientia News
Neuroscience Articles The secrets of the brain are secrets no longer; the field of neuroscience is rapidly expanding day by day. Study dopamine in the mesolimbic and nigrostriatal pathways; explore shattered brains in traumatic brain injuries, and more. You may also like: Biology , Immunology , Medicine Dopamine in the movement and reward pathways Aka the mesolimbic and nigrostriatal pathways Pseudo-Angelman syndrome A rare neurological disease that causes intellectual deficits. Article #2 in a series on Rare diseases. What does depression do to your brain? The biological explanation of Major Depressive Disorder (MDD). Article #1 in a series on depression and the brain. Neuroimaging and spatial resolution Which type of brain scan has it all? Previous
- Pharmacology | Scientia News
Pharmacology Articles Study the plethora of interactions between drug and target with these articles focusing on antibiotic resistance, analgesics, and drug treatments for diseases with presently no cure. You may also like: Chemistry , Medicine Effect of heat on medicine When medication is exposed to extreme heat, what happens? Antibiotic resistance Its rising threat Exploring ibuprofen Ibuprofen is a painkiller A treatment for Parkinson's disease By using a common diabetes drug
- Biology Articles | Scientia News
Biology Articles Dive into the latest biological research! Read about animal testing and ethics, discover how moving houses can affect your health in gentrification, and learn how specific organisms can survive in the extreme cold. You may also like: Cancer , Ecology , Genetics , Immunology , Neuroscience , Zoology , and Medicine Animal testing and ethics A breakdown on the practices and procedures Gentrification in the context of health How does moving houses impact your well-being? Cryptosporidium crisis Investigating the outbreak in Devon, UK in May 2024 Survival secrets of the Arctic springtail How do springtails (Collembola) survive the extreme cold? An introduction to stem cells Cells that can differentiate into any other type of cell. Article #1 in a series on stem cells. Monkey see, monkey clone An outline of recent discoveries in cloning research Are we doing enough to fight anti-fungal resistance? Preventing fungal infections in the body Previous
- Extra resources | Scientia News
Extra Resources A masterlist of other websites, textbooks, YouTube videos, and books to help with your studies, research and revision. Looking after mental health Would you like to see more resources? Email us at scientianewsorg@gmail.com , or fill in the contact form and we'll get in touch! Do check the forum if you have any more questions. ■■■■■ You may also like: A-level resources, IB resources, Entrance exam preparation, FREE CV check! GENERAL INFORMATION Referencing guide: - Cite Them Right - Cite this for me - Phrasebank to help with essays Free notes and textbooks: Studocu Grammar checker: Grammarly (available as a browser extension) Money financing for students: Save the Student Others: New Scientist (print and online magazine) BBC iPlayer science and nature documentaries WEBSITES TO AID STUDIES Science and maths: MME Revise Cognito Resources Access Tuition Maths Genie LibreTexts: biology , chemistry , physics , maths , engineering , and medicine HELP WITH RESEARCH Databases: - PubMed - MEDLINE (by National Library of Medicine) - ScienceDirect - Web of Science - Participate in actual research: Zooniverse - citizen science - Top multi-disciplinary journal in the field: Nature Pharmacology sites: - Pharmgkb - Drug Bank - Check which drugs are in trial TEXTBOOKS FOR PHARMACOLOGY AND RELATED - Katzung's Basic & Clinical Pharmacology, 16th edition by Todd Vanderah, PhD - The Top 100 Drugs: Clinical Pharmacology and Practical Prescribing by Andrew Hitchings, Daniel Burrage, Dagan Lonsdale and Emma Baker BIOLOGICAL SCIENCES TEXTBOOKS Biology: - Campbell & Reece - Molecular biology and genetics: Molecular Biology of the Cell. 4th edition - Molecular Cell Biology by Lodish et al - Anatomy and physiology: Marieb - Principles of Animal Physiology by Moyes and Schulte - Animal Physiology by Hill, Wyse, and Anderson - Developmental Biology by Barresi and Gilbert - Cancer: The Biology of Cancer by Robert A. Weinberg Biochemistry: - Medical Biochemistry b y N. Mallikarjuna Rao Neuroscience: - Purves et. al - Kandel Immunology: - Immunobiology, 5th edition The Immune System in Health and Disease Genetics: - Emery's Elements of Medical Genetics and Genomics by Turnpenny & Ellard - Lewin’s Genes by Krebs, Goldstein, and Kilpatrick - Human Molecular Genetics by Strachan and Read CHEMISTRY TEXTBOOKS Physical chemistry: - Atkins Physical Chemistry (latest edition) - Solid State Chemistry (Fourth Edition) by Lesley Smart and Elaine Moore Organic chemistry: - Jonathan Clayden Organic Chemistry (latest edition) Inorganic chemistry: - Atkins Physical Chemistry (latest edition) - Housecroft Inorganic Chemistry (latest edition) - Electronic Structure (Basic Theory and Practical Methods) by Richard M. Martin - Two-minute Neuroscience - Amoeba Sisters (biology related) - Khan Academy (all STEM based) - TEDx Talk - Royal Society (range of science videos) - NumberPhile - patrickJMT (maths) - Tyler DeWitt (general chemistry) - Crash Course - Stanford Medicine (wellness) PHYSICS Resources: - Astronomy Picture of the Day - NASA STEM activities Textbooks: - University Physics by Young and Freedman - Introduction to Electrodynamics by Griffiths - Introduction to Elementary Particles by Griffiths - Introduction to Quantum Mechanics by Griffiths - Modern Quantum Mechanics (Third Edition) by J. J. Sakurai and Jim Napolitano - Introductory Statistical Mechanics by Bowley & Sanchez - Statistical Mechanics: A Survival Guide by Glazer & Wark - Electricity and Magnetism by Morin and Purcell - Concepts in Thermal Physics by Blundell and Blundell - Introduction to Solid State Physics by Mittel & McEuen - Solid State Physics by Ashcroft and Mermin - Space, Time, and Geometry by Sean M. - Density Functional Theory by David S. Sholl and Janice A. Steckel - The Physics of Semiconductors: An Introduction Including Nanophysics and Applications by Marius Grundmann MATHS Textbooks: - Mathematical Methods for Physicists and Engineers by Riley Benson and Hobson - Mathematics for Natural Scientists 1 and 2 by Lev Kantorovich - Advanced Engineering Mathematics by Kreyszig - Thomas's Calculus by George B. Thomas - Mathematical Methods for Science students by G Stephenson - Contemporary Abstract Algebra by Joseph A. Gallian Read this article on how to excel in maths COMPUTER SCIENCE AND RELATED Resources: - Codeacademy - W3Schools ( has tutorials for HTML/ CSS/ Javascript, Python, Java, and many other languages) - Adacomputerscience - TeachComputing INFORMATIVE YOUTUBE CHANNELS
- Engineering | Scientia News
Engineering Articles Recognising the remarkable contributions in the vast field of engineering, including silicon hydrogel contact lenses, wireless electricity, and many other innovations. You may also like: Maths , Physics , Technology Pioneers in biomedical engineering An International Women's Month collab with Kameron's Lab Silicon hydrogel contact lenses A case study on this latest innovation in eye vision correction Nikola Tesla and wireless electricity Tesla's dream of Wardenclyffe Tower COMING SOON
- Artemis: The Lunar South Pole Base | Scientia News
Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Artemis: The Lunar South Pole Base 13/12/24, 12:20 Landing on the moon (again!) Humans have not visited the moon since 1972, but that’s about to change. Thanks to NASA’s Artemis missions, we have already taken the first small step towards our own lunar home for astronauts. NASA has established the second generation of its lunar missions- “Artemis”, fittingly named after the ancient Greek Goddess of the Moon, and Apollo’s twin. The ultimate aim of the Artemis missions is to solidify a stepping stone to Mars. Technologies will be developed, tested, and perfected, before confidence is built to travel on to Mars. NASA has to consider the natural conditions of the Moon, since doing so will allow astronauts to limit their reliance on resources from Earth, and increase their length of stay and therefore potential for research. The amount achieved would be extremely limited if a lunar mission relied solely on resources from Earth, due to the limitation of rocket payloads. This is known as In-Situ Resource Utilisation, and in addition to extended lunar stays, its success on the Moon is essential if we hope to one day establish a base on Mars. As a priority, astronauts need to have access to energy and water. Luckily, the conditions at the lunar south pole may be ideal for this. Unlike Earth, where we experience seasons due to its 23.5° tilt, the Moon’s tilt is tiny, at only 1.5°. This means some areas at the lunar poles are almost always exposed to sunlight, providing a reliable source of solar energy generation for a potential Artemis Base Camp. And since the Sun is always near the horizon at the poles, there are even areas in deep craters that never see the light. These areas of “eternal darkness” can reach temperatures of -235°, possibly allowing astronauts access to water ice. Aside from access to resources, Artemis has to consider the dangers that come from living in space. Away from the safety of Earth’s protective atmosphere and magnetosphere, astronauts would be exposed to harsh solar winds and cosmic rays. To combat this, NASA hopes to make use of the terrain surrounding the base, highlighting another advantage of the hilly south pole [3]. The exact location for the Artemis Base is currently undecided. We just know it will most likely be near a crater rim by the south pole, and on the Earth-facing side to allow for communication to and from Earth. Not only is the south pole ideal from a practical standpoint, it is also an area of exciting scientific interest. Scientists will have access to the South Pole–Aitken basin, not only the oldest and largest confirmed impact crater on the Moon, but the second largest confirmed impact crater in the entire Solar System. With a depth of up to 8.2 km, and diameter of 2500 km, it is thought this huge crater will contain exposed areas of lower crust and mantle, providing an insight into the Moon’s history and formation. Additionally, thanks to areas of “eternal darkness” the ice water found deep within craters at the south pole may hold trapped volatiles up to 3.94 billion years old, which, although not as ancient as previously expected, can still provide an insight into the evolution of the Moon. The scientific potential of the Artemis Base Camp extends far beyond location specific investigations to our most fundamental understanding of physics, from Quantum Physics to General Relativity. Not to mention the astronauts themselves, as well as “model organisms” which will be the focus of physiological studies into the effects of extreme space environments. Artemis Timeline Overview: Artemis 1 launched on 16th November 2022. It successfully tested the use of two key elements of the Artemis mission- Orion and the Space Launch System (SLS)- with an orbit around the moon. Orion, named after the Goddess Artemis' hunting partner, is the spacecraft that will carry the Artemis crew into lunar orbit. It is carried by the SLS, NASA’s super heavy-lift rocket, one of the most powerful rockets in the world. Artemis 2 plans to launch late 2024 and will be the first crewed Artemis mission, with a lunar flyby bringing four astronauts further than humans have ever travelled beyond Earth. Artemis 3 plans to launch the following year. It will be the historic moment that will see humans step foot on the surface of the moon for the first time since we left in 1972. The mission will be the first use of another key element of the Artemis missions- the Human Landing System (HLS). Astronauts will use a lunar version of SpaceX’s Starship rocket as the HLS for Artemis 3 and 4. (Starship is currently in its test stage, with its second test launch carried out very recently on the 18th November 2023.) Two astronauts will stay on the lunar surface for about a week, beating the current record of 75 hours on the Moon by Apollo 17. Artemis 4 plans to launch in 2028. The mission will include the first use of Gateway, another key element to the Artemis missions. Gateway will be a multifunctional lunar space station, designed to transfer astronauts between Orion and HLS, as well as hosting astronauts to live and research in lunar orbit. Gateway will be constructed over Artemis 4-6 , with each mission completing an additional module. NASA plans to have Artemis missions extending for years beyond this, with over 10 proposed and more expected. Eventually we will have a working base on the Moon with astronauts able to stay for months at a time. Having already started a year ago, Artemis will continue to expand our horizons. We can look forward to uncovering long held secrets of the Moon, and soon, setting our sights confidently on Mars. Written by Imo Bell Related articles: Exploring Mercury / Fuel for the colonisation of Mars / Nuclear fusion REFERENCES How could we live on the Moon? - Institute of Physics. Available at: https://www.iop.org/explore-physics/moon/how-could-we-live-on-the-moon Understanding Physical Sciences on the Moon - NASA. Available at: https://science.nasa.gov/lunar-science/focus-areas/understanding-physical-sciences-on-themoon NASA’s Artemis Base Camp on the moon will need light, water, elevation - NASA. Available at: https://www.nasa.gov/humans-in-space/nasas-artemis-base-camp-on-the-moon-will-need-ligh t-water-elevation Zuber, M.T. et al. (1994) ‘The shape and internal structure of the Moon from the Clementine Mission’, Science, 266(5192), pp. 1839–1843. doi:10.1126/science.266.5192.1839. Flahaut, J. et al. (2020) ‘Regions of interest (ROI) for future exploration missions to the Lunar South Pole’, Planetary and Space Science, 180, p. 104750. doi:10.1016/j.pss.2019.104750. Moriarty, D.P. et al. (2021) ‘The search for lunar mantle rocks exposed on the surface of the Moon’, Nature Communications, 12(1). doi:10.1038/s41467-021-24626-3. Estimates of water ice on the Moon get a ‘dramatic’ downgrade - Physics World. Available at: https://physicsworld.com/a/estimates-of-water-ice-on-the-moon-get-a-dramatic-downgrade Biological Systems in the lunar environment - NASA. Available at: https://science.nasa.gov/lunar-science/focus-areas/biological-systems-in-the-lunar-environme Https://www.nasa.gov/wp-content/uploads/static/artemis/NASA : Artemis - NASA. Available at: https://www.nasa.gov/specials/artemis Project Gallery
- Which fuel will be used for the colonisation of Mars? | Scientia News
Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Which fuel will be used for the colonisation of Mars? 13/12/24, 12:15 Speculating the prospect of habitating Mars The creation of a “Planet B” is an idea that has been circulating for decades; however we are yet to find a planet that is similar enough to our Earth that would be viable to live on without major modifications. Mars has been the most widely talked about planet in the media, and is commonly thought to be the planet that we know the most about. So, could it be habitable? If we were to move to Mars, how would society thrive? The dangers of living on Mars As a neighbour to Earth, Mars might be classed as habitable without more knowledge. Unfortunately, it is quite the opposite. On Earth, humans have access to air with an oxygen content of 21% however Mars only has 0.13% oxygen. The difference in the air itself suggests an uninhabitable planet. Another essential factor of human life is food. There have indeed been attempts to grow crops in Martian soil, including tomatoes, with great levels of success. Unfortunately, the soil is toxic therefore ingesting these crops could cause significant side effects in the long term. It could be possible to introduce a laboratory that crops could be grown in, modelling Earth soil and atmospheric conditions however this would be difficult. Air and food are two resources that are essential and could not readily be available in a move to Mars. Food could be grown in laboratory style greenhouses and the air could be processed. It is important to note that these solutions The Mars Oxygen ISRU Experiment The Mars Oxygen ISRU Experiment (MOXIE) was a component of the NASA Perseverance rover that was sent to Mars during 2020. Solid oxide electrolysis converts carbon dioxide, readily available in the atmosphere of Mars, into carbon monoxide and oxygen. MOXIE contributes to the idea that, in the move to Mars, oxygen would have to be ‘made’ rather than being readily available. The MOXIE experiment utilised nuclear energy to do this, and it was shown that oxygen could be produced at all times of day in multiple different weather conditions. It is possible to gain oxygen on Mars, but a plethora of energy is required to do so. What kind of energy would be better? With accessing oxygen especially, the energy source on Mars would need to be extremely reliable in order to ensure the population is safe. It is true that fossil fuels are reliable however it is increasingly obvious that the reason a move to Mars would be necessary is due to the lack of care of the Earth therefore polluting resources are to be especially avoided. A combination of resources is likely to be used. Wind power during the massive dust storms that find themselves on Mars regularly and solar power in clear weather, when the dust has not yet settled over the surface. One resource that would be essential is nuclear power. The public perception is mixed yet it is certainly reliable and that is the main requirement. After all, a human can only survive for around 5 minutes without oxygen. Time lost due to energy failures would be deadly. Written by Megan Martin Related articles: Exploring Mercury / Artemis: the lunar south pole base Project Gallery