top of page

Search Index

352 results found

  • STEM research and resources for students | Scientia News

    Scientia News is full of STEM blogs, articles and resources freely available across the globe for students. Browse all of our fascinating content written by students and professionals showing their passion in STEM and the other sciences. Log In Welcome to Scientia News DELIVERING INFORMATIVE CONTENT Scientia News is full of STEM blogs, articles and resources freely available across the globe for students. Browse all of our fascinating content written by students and professionals showing their passion in STEM and other sciences. We hope this platform helps you discover something that inspires your curiosity, and encourages you to learn more about important topics in STEM. Meet the Official Team NAVIGATE AND CLICK THE PHOTOS BELOW TO LEARN MORE ABOUT US! To play, press and hold the enter key. To stop, release the enter key. To play, press and hold the enter key. To stop, release the enter key. To play, press and hold the enter key. To stop, release the enter key. Latest Articles neuroscience Does being bilingual make you smarter? View More ecology Meet the microbes that feed phosphorus to plants View More biology Maveerar Naal: health, trauma, and resilience amid decades of war View More physics Creatio ex Nihilo: a Christian creation doctrine including physics View More CONTACT CONTACT US Scientia News welcomes anyone who wants to share their ideas and write for our platform. If you are interested in realising your writing potential with us AND live in the UK; and/ or would like to give feedback: Email us at scientianewsorg@gmail.com or fill in our GET IN TOUCH form below and we'll be in contact... Follow us on our socials for the latest updates. Comment, like and share! Join our mailing list below for latest site content. You can also sign up to become a site member . SUBSCRIPTION Join our mailing list to receive alerts for new articles and other site content. Be sure to check your spam/ junk folders in case emails are sent there. Email Subscribe GET IN TOUCH First Name Last Name Email Message Send Thanks for submitting!

  • Bone cancer | Scientia News

    Pathology and emerging therapeutics Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Bone cancer 09/07/25, 13:27 Last updated: Published: 12/10/23, 10:38 Pathology and emerging therapeutics Introduction: what is bone cancer? Primary bone cancer can originate in any b one. However, most cases develop in the long bones of the legs or upper arms. Each year, approximately 550 new cases are diagnosed in the United Kingdom. Primary bone cancer is distinct from secondary bone cancer, which occurs when cancer spreads to the bones from another region of the body. The focus of this article is on primary bone cancer. There are several types of bone cancer: osteosarcoma, Ewing sarcoma, and chondrosarcoma. Osteosarcoma originates in the osteoblasts that form bone. It is most common in children and teens, with the majority of cases occurring between the ages of 10 and 30. Ewing (pronounced as YOO-ing) sarcoma develops in bones or the soft tissues around the bones. Like osteosarcoma, this cancer type is more common in children and teenagers. Chondrosarcoma occurs in the chondrocytes that form the cartilage. Chondrosarcoma is most common in adults between the ages of 30 and 70 and is rare in the under-21 age group. Causes of bone cancer include genetic factors such as inherited mutations and syndromes, and environmental factors such as previous radiation exposure. Treatment will often depend on the type of bone cancer, as the specific pathogenesis of each case is unknown. What is the standard treatment for bone cancer? Most patients are treated with a combination of surgical excision, chemotherapy, and radiation therapy. Surgical excision is employed to remove the cancerous bone. Typically, it is possible to repair or replace the bone, although amputation is sometimes required. Chemotherapy involves using powerful chemicals to kill rapidly growing cells in the body. It is widely used for osteosarcoma and Ewing sarcoma but less commonly used for chondrosarcomas. Radiation therapy (also termed radiotherapy) uses high doses of radiation to damage the DNA of cancer cells, leading to the killing of cancer cells or slowed growth. Six out of every ten individuals with bone cancer will survive for at least five years after their diagnosis, and many of these will be completely cured. However, these treatments have limitations in terms of effectiveness and side effects. The limitation of surgical excision is the inability to eradicate microscopic cancer cells around the edges of the tumour. Additionally, the patient must be able to withstand the surgery and anaesthesia. Chemotherapy can harm the bone marrow, which produces new blood cells, leading to low blood cell counts and an increased risk of infection due to a shortage of white blood cells. Moreover, radiation therapy uses high doses of radiation, resulting in the damage of nearby healthy tissues such as nerves and blood vessels. Taken together, this underscores the need for a therapeutic approach that is non-invasive, bone cancer-specific, and with limited side effects. miR-140 and tRF-GlyTCC Dr Darrell Green and colleagues investigated the role of small RNAs (sRNAs) in bone cancer and its progression. Through the analysis of patient chondrosarcoma samples, the researchers identified two sRNA candidates associated with overall patient survival: miR-140 and tRF-GlyTCC. MiR-140 was suggested to inhibit RUNX2, a gene upregulated in high-grade tumours. Simultaneously, tRF-GlyTCC was demonstrated to inhibit RUNX2 expression by displacing YBX1, a multifunctional protein with various roles in cellular processes. Interestingly, the researchers found that tRF-GlyTCC was attenuated during chondrosarcoma progression, indicating its potential involvement in disease advancement. Furthermore, since RUNX2 has been shown to drive bone cancer progression, the identified miR-140 and tRF-GlyTCC present themselves as promising therapeutic targets. CADD522 Dr Darrell Green and colleagues subsequently investigated the impact of a novel therapeutic agent, CADD522, designed to target RUNX2. In vitro experiments have revealed that CADD522 reduced proliferation in chondrosarcoma and osteosarcoma. However, a bimodal effect was observed in Ewing sarcoma, indicating that lower levels of CADD522 promoted sarcoma proliferation, whereas higher levels of the same drug suppressed proliferation. In mouse models treated with CADD522, there was a significant reduction in cancer volumes observed in both osteosarcoma and Ewing sarcoma. Take-home message The results described here contribute to understanding the molecular mechanisms involved in bone cancer. They highlight the anti-proliferative and anti-tumoral effects of CADD522 in treating osteosarcoma and Ewing sarcoma. Further research is necessary to fully elucidate the specific molecular mechanism of CADD522 in bone cancer and to identify potential side effects. Written by Favour Felix-Ilemhenbhio Related articles: Secondary bone cancer / Importance of calcium / Novel neuroblastoma driver for therapeutics Project Gallery

  • Antiretroviral therapy: a key to helping HIV patients | Scientia News

    Most research studies are now being diverted to Antiretroviral Therapy (ART) Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Antiretroviral therapy: a key to helping HIV patients 09/07/25, 10:51 Last updated: Published: 12/10/24, 11:34 Most research studies are now being diverted to Antiretroviral Therapy (ART) Human Immunodeficiency Virus, commonly called HIV, is a sexually transmitted disease that affects approximately 40 million people worldwide and is mostly common in ages 15-49 years. It is spread through direct contact with the blood, semen, pre-seminal fluid, and vaginal fluids of an infected person through mucous membranes—contact with male and female genital tracks. Additionally, HIV can be spread through breast milk from mother to child—studies have shown that infants likely contract the virus when the milk makes contact with the mucous membranes of the gut. How does HIV affect immune cells? HIV is a retrovirus—enveloped RNA viruses that can evade the immune defense system and live within host cells indefinitely. To infect cells HIV uses several mechanisms to make contact with the host cell's membrane. This involves the binding of HIV envelope protein (Env) with the cell receptor CD4 of an immune cell (T-helper cells). Env then binds to a co-receptor on the surface of the cell membrane, triggering membrane fusion. Membrane fusion leads to formation of a fusion pore where HIV successfully enters into the cell's cytoplasm through. Following this, HIV converts its RNA to DNA using enzyme reverse transcriptase and then uses integrase enzymes to become a permanent part of the host cell’s DNA. This allows HIV to replicate at a rapid rate, eventually causing the cells to bloat and rupture, killing the cell all while also “hiding” from the immune defense system and going into latency. Such a process is what weakens the immune system as there is a significant depletion in T-helper cells—cells that fight off infections and diseases. The evolution of ART For the reasons above, HIV is almost impossible to cure. While research is still being conducted to find a cure for HIV, most studies are now being diverted to Antiretroviral Therapy (ART). ART is a revolutionary treatment introduced in the late 198 0s that aims to prevent transmission of HIV, prolong survival, improve immune function and increase CD4 cell count, and improve overall mortality. The first drug released in the late 1980’s was Zidovudine, a nucleoside reverse transcriptase inhibitor (NRTI) that essentially prevents HIV’s RNA from being converted to DNA. This restricted replication hence increasing T-helper cell count. However, while shown to improve the condition of HIV patients, zidovudine did not work well on its own and caused drug resistance from prolonged use. Combination therapy was later introduced where scientists discovered zidovudine to be effective when used alongside another NRTI (dideoxycytidine). This combination did improve CD4 cell count and the overall condition of most patients, not in patients with advanced HIV who had prior use of zidovudine alone. Now, several medications such as NRTIs, non-nucleoside reverse transcriptase inhibitors (NNRTIs), protease inhibitors, and integrase inhibitors have been introduced and are used in a combination of three (Triple-Drug Therapy) to help suppress viral load to undetectable levels in the blood and improve the overall quality of life for patients. Triple-drug therapy can be tailored by doctors to improve the patient's condition. HIV is a sexually transmitted, chronic condition that affects less than 1% of the world's population. There is no cure for HIV, however, treatments (ART) have been introduced to reduce the viral load of HIV as well as improve the overall quality of life of patients. Compared to the past where these medications had to be taken multiple times a day, often causing severe side effects, patients can now take just a single tablet daily. This has changed the course of HIV treatment, allowing people to live lengthy, normal lives with the disease. Written by Sherine A Latheef Related article: CRISPR-Cas9 to potentially treat HIV REFERENCES Guha D, Ayyavoo V. Innate immune evasion strategies by human immunodeficiency virus type 1. ISRN AIDS . 2013;2013:954806. Published 2013 Aug 12. doi:10.1155/2013/954806 AlBurtamani N, Paul A, Fassati A. The Role of Capsid in the Early Steps of HIV-1 Infection: New Insights into the Core of the Matter. Viruses . 2021;13(6):1161. Published 2021 Jun 17. doi:10.3390/v13061161 Pau AK, George JM. Antiretroviral therapy: current drugs. Infect Dis Clin North Am . 2014;28(3):371-402. doi:10.1016/j.idc.2014.06.001 Mayers, Douglas L. “Prevalence and Incidence of Resistance to Zidovudine and Other Antiretroviral Drugs.” The American Journal of Medicine , vol. 102, no. 5, May 1997, pp. 70–75, https://doi.org/10.1016/s0002-9343(97)00067-3 . Accessed 5 Dec. 2021. “Antiretroviral Drug Discovery and Development | NIH: National Institute of Allergy and Infectious Diseases.” Www.niaid.nih.gov , www.niaid.nih.gov/diseases-conditions/antiretroviral-drug-development#:~:text=D urable%20HIV%20Suppression%20with%20Triple%2DDrug%20Therapy&text=In %20December%201995%2C%20saquinavir%20became. CDC. “How HIV Spreads.” HIV , 14 May 2024, www.cdc.gov/hiv/causes/index.html . clinicalinfo.hiv.gov . (n.d.). Protease Inhibitor (PI) | NIH . [online] Available at: https://clinicalinfo.hiv.gov/en/glossary/protease-inhibitor-pi . www.who.int . (n.d.). HIV . [online] Available at: https://www.who.int/data/gho/data/themes/hiv-aids#:~:text=Globally%2C%2039.9 %20million%20%5B36.1%E2%80%93. Project Gallery

  • Increasing awareness of mental health issues | Scientia News

    In today's fast-paced and often overwhelming world, taking care of our mental well-being is more crucial than ever. In this article, we will explore practical strategies that can easily be incorporated into our day-to-day lives, allowing us to establish a solid foundation for our mental well-being and sustain it in the long run. Go Back Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Empowering your mental health journey with practical strategies Last updated: 22/05/25 Published: 18/05/23 In today's fast-paced and often overwhelming world, taking care of our mental well-being is more crucial than ever. In this article, we will explore practical strategies that can easily be incorporated into our day-to-day lives, allowing us to establish a solid foundation for our mental well-being and sustain it in the long run. 1. Embracing mindfulness Mindfulness is a powerful practice that helps us stay present, cultivate awareness, and manage stress. Imagine starting your day by dedicating a few minutes to mindful breathing or meditation, allowing yourself to set a calm and focused tone for the day. Engage in activities with a mindful mindset, whether it's taking a peaceful walk in nature, relishing a cup of tea, or fully immersing yourself in the present moment. 2. Exercise Physical activity is another essential self-care strategy that not only benefits our physical health but also plays a profound role in nurturing our mental well-being. Find an exercise routine that that brings you joy and that easily fits into your life. Whether it's walking, jogging, yoga, or any other form of movement that resonates with you, the key is to find something you enjoy and can stick to. Even small bursts of exercise throughout the day, like a short walk during your lunch break or opting for the stairs instead of the elevator, can make a significant difference in your overall well-being. 3. Sleep Hygiene Adequate sleep is vital for mental and emotional wellbeing. Establishing good sleep hygiene is crucial. Maintain a consistent sleep schedule by going to bed and waking up at the same time each day. Create a relaxing bedtime routine that signals to your body that it's time to unwind. Consider reading a book, taking a warm bath, or practicing gentle stretches to prepare your mind and body for restful sleep. Ensure your bedroom provides an optimal sleep environment by keeping it dark, quiet, and cool, and minimize exposure to screens before bed. 4. Online mental health platforms In our digital age, online mental health platforms have become invaluable resources for supporting our mental well-being. Platforms like Headspace , Better Help , and Calm offer a range of services, including meditation exercises, therapy sessions with licensed professionals, and stress reduction tools. Exploring these platforms can provide the support and guidance needed on your mental health journey. Self-care apps that can be installed on phones Prioritising self-care is essential for maintaining good mental health. By incorporating these practices into your daily routine, you can nurture your mind, body, and soul. By investing time and energy into yourself, you are fostering a stronger foundation for a happier and healthier life. Written by Viviana Greco Related articles: Physical and mental health / Imposter syndrome in STEM / Mental health in the South Asian community

  • Maths | Scientia News

    Brush up on your mathematical knowledge with informative articles ranging from statistics and topology, to latent space transformations and Markov chain models. Maths Articles Brush up on your mathematical knowledge with informative articles ranging from statistics and topology, to latent space transformations and Markov chain models. You may also like: Economics , Physics , Engineering and Technology Unlocking the power of statistics What statistics are and its importance Latent spac e transformations Their hidden power in machine learning Topology In action Teaching maths How we can apply maths in our lives How to excel in maths A useful resource for students studying the subject Cognitive decision-making The maths involved Cross-curricular maths The game of life The maths behind trading A comprehensive guide to the Relative Strength Index (RSI) Markov chain models Named after the Russian mathematician, Andrei Markov, who had first studied them Proving causation Investigating why correlation doesn't necessarily mean causation, via Randomised Controlled Trials and Instrumental Variables

  • Beavers are back in Britain, ‘wood’ you like to know why? | Scientia News

    Beavers alter their landscape through dams, canals, and felling trees Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Beavers are back in Britain, ‘wood’ you like to know why? 09/07/25, 10:58 Last updated: Published: 03/12/24, 12:05 Beavers alter their landscape through dams, canals, and felling trees This is article no. 3 in a series on animal conservation. Next article: Pangolins: from poached to protected . Previous article: Conserving the California condor Eurasian beavers ( Castor fiber ) transform freshwater habitats so dramatically that they are nicknamed ‘ecosystem engineers’. Their dam-building and tree-felling activities could reduce flood risk and increase biodiversity. After being hunted to extinction centuries ago, beavers have been reintroduced to Britain in both organised and illicit ways. This article will describe where they have been reintroduced in Britain, and the impact they could have. Ecological importance of beavers By building dams, Eurasian beavers alter their habitat - often for the better. Beaver dams are made from wood, stones, and mud. They control the flow of river water, reducing the risk of floods and droughts. The resulting slower water is a good place for amphibians to lay eggs and undergo the aquatic part of their life cycle. As water builds up behind the dam, it converts the area into a wetland - a source of drinking water for animals like bats and an excellent carbon sink. Meanwhile, invertebrates can lay eggs or hide from predators in the spaces within beaver dams ( Figure 1 ). Further up the food chain, beaver dams have complex effects on fish. Although the still water provides habitat for overwintering and rearing young, dams restrict the movement of fish species like salmon. However, most studies have concluded that beaver dams benefit freshwater biodiversity. Dams are not the only way Eurasian beavers improve their landscape. To access food and construction materials easily, beavers dig canals – which make the habitat better drained and more complex. Moreover, beavers gnaw at tree trunks and branches, sometimes knocking over entire trees. This creates deadwood where terrestrial invertebrates can live. Felling trees also allow sunlight to reach the river surface, promoting aquatic plant growth. When beavers gnaw at willow trees, they create propagules, which disperse along the beaver-made canal network and grow downstream. These new willow trees stabilise the river bank and further reduce the flood risk. Humans often trim back trees to stimulate their growth – called coppicing – but beavers do this free of charge. Coppicing, dam building, and canal digging are just a few ways beavers save the human costs of restoring and protecting natural habitats. Extinction and reintroduction However, Eurasian beavers used to be more exploited than appreciated. They were hunted for their fur, meat, and a secretion called castoreum, which is used in perfume and pharmaceuticals. Exactly when and how the beaver population went extinct from Britain is unclear, but the last written record of a beaver is from 1526 in Scotland and 1780 in England. Since then, the British turned wetlands into farmland and forgot about beavers … until recently. After centuries, beavers returned to Scotland in the late 2000s. A handful of beavers were spotted in River Tay about 15 years ago, after either an enclosure escape or an illegal release. There are 114 families in this illegal population, which has genetic origins in Germany. The first official beaver reintroduction occurred in Knapdale Forest, Scotland, in 2009 – but this population did not grow as quickly as the River Tay one. With scepticism, the reintroduction of Eurasian beavers to Scotland was deemed a success, and they became a ‘European Protected Species’ in Scotland in 2019. Seeing Eurasian beavers thriving in Scotland encouraged reintroduction plans in England. In the English county of Devon, River Otter showed signs of beaver presence since 2008 and breeding since 2013. Authorities were worried these illegally released beavers would spread foreign diseases to local wildlife, but the public campaigned to let the beavers be. Public affection for beavers led to the River Otter Beaver Trial in 2015, where two breeding pairs were released into the river after thorough health checks. By 2019, the number of breeding pairs grew to seven ( Figure 2 ). Therefore, beavers have successfully returned to England. Conclusion Beavers alter their landscape through dams, canals, and felling trees. However, in Britain, they were hunted to extinction a long time ago. Although beavers first returned to England and Scotland illegally, they now live in healthy, growing populations. Hopefully they will remain protected and loved by the public, helping us to restore wetlands and improve British freshwater biodiversity. Written by Simran Patel Related article: Vicuna conservation REFERENCES Andersen, L.H. et al. (2023) ‘Can reintroduction of beavers improve insect biodiversity?’, Journal of Environmental Management , 337, p. 117719. Available at: https://doi.org/10.1016/j.jenvman.2023.117719 . Brazier, R.E., Elliott, M., Andison, E., Auster, R.E., Bridgewater, S., Burgess, P., Chant, J., Graham, H., Knott, E., Puttock, A.K., Sansum, P., Vowles, A., (2020) ‘River Otter Beaver Trial: Science and Evidence Report’. Brazier, R.E. et al. (2021) ‘Beaver: Nature’s ecosystem engineers’, WIREs Water , 8(1), p. e1494. Available at: https://doi.org/10.1002/wat2.1494 . Campbell-Palmer, R. et al. (2020) ‘Beaver genetic surveillance in Britain’, Global Ecology and Conservation , 24, p. e01275. Available at: https://doi.org/10.1016/j.gecco.2020.e01275 . Gaywood, M., Batty, D. and Galbraith, C. (2008) ‘Reintroducing the European Beaver in Britain’, British Wildlife , 19, pp. 381–391. Halley, D.J., Saveljev, A.P. and Rosell, F. (2021) ‘Population and distribution of beavers Castor fiber and Castor canadensis in Eurasia’, Mammal Review , 51(1), pp. 1–24. Available at: https://doi.org/10.1111/mam.12216 . Hooker, J. et al. (2024) ‘Re-establishing historic ecosystem links through targeted species reintroduction: Beaver-mediated wetlands support increased bat activity’, Science of The Total Environment , 951, p. 175661. Available at: https://doi.org/10.1016/j.scitotenv.2024.175661 . Wilson, J.B., Bradley, J. and Bremner-Harrison, S. (2024) ‘The short-term impact of Eurasian beavers ( Castor fiber ) post-reintroduction on amphibian abundance and diversity in a lentic environment’, The Glasgow Naturalist , 28(2). Available at: https://doi.org/10.37208/tgn28224 . Project Gallery

  • Conserving the California condors | Scientia News

    Captive breeding has grown the California condor population over 18-fold Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link Conserving the California condors 24/04/25, 11:46 Last updated: Published: 04/11/24, 14:56 Captive breeding has grown the California condor population over 18-fold This is article no. 2 in a series on animal conservation. Next article: Beavers are back in Britain . Previous article: The cost of coats: celebrating 55 years of vicuna conservation . California condors are critically endangered birds living on the west coast of North America. Their population decline was first reported in 1953, and they were nearly extinct by 1987. Since then, a captive breeding and reintroduction program has saved the species in the face of multiple human threats. This article will describe some of those threats and available measures to mitigate them. Why California condors became endangered Lead poisoning was the main cause of California condor mortality in the late 20th century. Like vultures, California condors eat dead mammals. When these mammals were shot dead with lead bullets, condors ingested fragments of the bullets, and the lead poisoned their bloodstream. Multiple condors feeding on the same carcass got poisoned, which could be why the population crashed so badly. Today, lead poisoning is the biggest, but not the only, threat to California condor survival ( Figure 1 ). The birds used to be hunted for museums and private collections in the early 20th century, but nowadays, any shootings are accidental. A bigger concern, and the second-most common human-related cause of mortality, is condors colliding with utility poles and power lines. The third-most common is fires: a 2015 study found that every recent wildfire in California has coincided with at least one condor death. Climate change will make these fires more frequent and severe. These threats mainly apply to inland California condors - halogenated organic compound (HOC) pollution is an issue for coastal birds. When coastal condors eat marine mammals contaminated with HOCs, the compounds disrupt their reproductive system and thin their eggshells. In short, humans have created a hostile environment for California condors. Successful captive breeding and population recovery Despite these threats, captive breeding has grown the California condor population over 18-fold ( Figure 2 ). In 1987, all remaining wild condors were captured and bred, with juveniles released to the wild from 1992 onwards. Reintroduced birds are monitored regularly, and poisoned birds are treated with chelation therapy - where a drug binds to lead in the bloodstream and takes it to the kidneys to be filtered out. Since 1995, power line collisions have been avoided by giving juveniles behavioural training before reintroduction. Because of these measures, the California condor mortality rate in the wild decreased from 37.2% in 1992-1994 to 5.4% in 2001-2011. Challenges of conserving California condors Although captive breeding has saved the California condor population, it has also altered behaviours. The original condors stay with one mate longer than reintroduced condors, which may form polygamous relationships. Scientists think that spending so much time with non-family members in captivity has made juveniles promiscuous when reintroduced. Captive bred condors have also gotten used to being fed by people - so they approach people more often, spend longer in areas of human activity, and forage over a smaller area than the original condors. Moreover, condors in southern California were spotted feeding their chicks human litter. These behavioural changes mean the wild California condor population is not self-sustaining. The wild population is also not self-sustaining because condors are still being poisoned ( Figure 3 ). Banning lead bullets is the most effective way to guarantee population growth, but enforcing it has been challenging. Non-toxic alternative bullets like copper cannot find popularity. For population growth, every adult California condor killed is estimated to be worth 2-3 reintroduced juveniles. This is because released juveniles are more vulnerable and take years to reach breeding age. Therefore, American conservationists must keep pressuring authorities to reduce threats to adult California condors. Conclusion Pollution, urbanisation, and climate change have made it hard for the California condor population to recover from decades of lead poisoning. Long generation times and behavioural changes mean captive breeding is the species’ only hope of survival. Perhaps humans are the ones who need to change their behaviour - not feeding California condors and switching to copper bullets would allow these majestic birds to keep roaming the skies. Written by Simran Patel Related articles: Marine iguana conservation / Deception by African birds / Emperor penguins REFERENCES Bakker, V.J. et al. (2024) Practical models to guide the transition of California condors from a conservation-reliant to a self-sustaining species. Biological Conservation . 291: 110447. Available from: https://www.sciencedirect.com/science/article/pii/S0006320724000089 (Accessed 19th September 2024). D’Elia, J., Haig, S.M., Mullins, T.D. & Miller, M.P. (2016) Ancient DNA reveals substantial genetic diversity in the California Condor (Gymnogyps californianus) prior to a population bottleneck. The Condor . 118 (4): 703–714. Available from: https://doi.org/10.1650/CONDOR-16-35.1 (Accessed 28th September 2024). Finkelstein, M.E. et al. (2023) California condor poisoned by lead, not copper, when both are ingested: A case study. Wildlife Society Bulletin . 47 (3): e1485. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/wsb.1485 (Accessed 28th September 2024). Kelly, T.R. et al. (2015) Two decades of cumulative impacts to survivorship of endangered California condors in California. Biological Conservation . 191: 391–399. Available from: https://www.sciencedirect.com/science/article/pii/S0006320715300173 (Accessed 28th September 2024). Mee, A. & Snyder, N. (2007) California Condors in the 21st Century - conservation problems and solutions. In: 243–279. Meretsky, V.J., Snyder, N.F.R., Beissinger, S.R., Clendenen, D.A. & Wiley, J.W. (2000) Demography of the California Condor: Implications for Reestablishment. Conservation Biology . 14 (4): 957–967. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1046/j.1523-1739.2000.99113.x (Accessed 29th September 2024). Stack, M.E. et al. (2022) Assessing Marine Endocrine-Disrupting Chemicals in the Critically Endangered California Condor: Implications for Reintroduction to Coastal Environments. Environmental Science & Technology . 56 (12): 7800–7809. Available from: https://doi.org/10.1021/acs.est.1c07302 (Accessed 19th September 2024). U.S. Fish and Wildlife Service (2023) California Condor Population Graph, 1980-2022 | FWS.gov . 18 April 2023. Available from: https://www.fws.gov/media/california-condor-population-graph-1980-2022 (Accessed 28th September 2024). U.S. Fish and Wildlife Service (2020) California Condor Recovery Program 2020 Annual Population Status . Available from: https://www.fws.gov/sites/default/files/documents/2020-California-Condor-Population-Status.pdf (Accessed 28th September 2024). Project Gallery

  • The exciting potential of mRNA vaccines | Scientia News

    Unleashing the power of mRNA: revolutionising medicine with personalised vaccines Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The exciting potential of mRNA vaccines 11/07/25, 10:03 Last updated: Published: 03/12/24, 12:19 Unleashing the power of mRNA: revolutionising medicine with personalised vaccines Basic mRNA vaccine pharmacology Basic mRNA vaccine pharmacology involves the study of two types of RNA used as vaccines: non-replicating mRNA and self-amplifying RNA. Non-replicating mRNA-based vaccines encode the antigen of interest and contain untranslated regions (UTRs) at both ends. Self-amplifying RNAs, on the other hand, encode both the antigen and the viral replication machinery, allowing for intracellular RNA amplification and abundant protein expression. For successful protein production in mRNA therapeutics, the optimal translation of in vitro transcribed (IVT) mRNA is crucial. Factors such as the length of the poly(A) tail, codon usage, and sequence optimisation can influence translation efficiency and accuracy. Adding an optimal length of poly(A) to mRNA is necessary for efficient translation. This can be achieved by directly incorporating it from the encoding DNA template or by using poly(A) polymerase. Codon usage also plays a role in protein translation. Replacing rare codons with frequently used synonymous codons, which have abundant cognate tRNA in the cytosol, can enhance protein production from mRNA. However, the accuracy of this model has been subject to questioning. Optimally translated IVT mRNA encoding mRNA IVT mRNA plays a crucial role in mRNA vaccines as it is designed for optimal translation, ensuring efficient protein production. To achieve this, a 5ʹ cap structure is added, which is essential for efficient protein synthesis. Different versions of 5ʹ caps can be added during or after the transcription process. Furthermore, the poly(A) tail plays a significant regulatory role in mRNA translation and stability. Sequence optimisation is another critical factor that can enhance mRNA levels and protein expression. Increasing the G:C content has been shown to elevate steady-state mRNA levels in vitro and improve protein expression in vivo. Furthermore, modifying the codon composition or introducing modified nucleosides can positively influence protein expression. However, it is important to note that these sequence engineering techniques may impact mRNA secondary structure, translation kinetics, accuracy, protein folding, as well as the expression of alternative reading frames and cryptic T-cell epitopes. Sequence optimisation for protein translation Sequence optimisation plays a crucial role in the development of mRNA vaccines. It involves modifying the mRNA sequence to improve the efficiency of protein translation. By optimising the sequence, researchers can enhance the expression and stability of therapeutic mRNAs. However, the immunogenicity of exogenous mRNA is a concern, as it can trigger a response from various innate immune receptors. In some cases, encoding mRNA in the hypothalamus may even elicit a physiological response. Despite initial promising outcomes, the development of mRNA therapeutics has been hindered by concerns regarding mRNA instability, high innate immunogenicity, and inefficient in vivo delivery. As a result, DNA-based and protein-based therapeutic approaches have been preferred in the past. Modulation of immunogenicity Modulation of immunogenicity is a crucial aspect of mRNA vaccine development. Researchers aim to design mRNA vaccines that elicit a strong immune response while minimising adverse reactions. This involves careful selection of antigens and optimisation of the mRNA sequence to enhance immunogenicity. Self-replicating RNA vaccines and adjuvant strategies, such as TriMix, have shown increased immunogenicity and effectiveness. The immunostimulatory properties of mRNA can be further enhanced by including adjuvants. The size of the mRNA-carrier complex and the level of innate immune sensing in targeted cell types can influence the immunogenicity of mRNA vaccines. Advantages of mRNA vaccines mRNA vaccines offer several advantages over conventional vaccine approaches. First, they have high potency, meaning they can induce a strong immune response. Second, they have a capacity for rapid development, allowing for quick vaccine production in response to emerging infectious diseases or new strains. Third, mRNA vaccines have the potential for rapid, inexpensive, and scalable manufacturing, mainly due to the high yields of in vitro transcription reactions. Additionally, mRNA vaccines are minimal genetic vectors, avoiding anti-vector immunity, and can be administered repeatedly. However, recent technological innovations and research investments have made mRNA a promising therapeutic tool in vaccine development and protein replacement therapy. mRNA has several advantages over other vaccine platforms, including safety and efficacy. It is non-infectious and non-integrating, reducing the risk of infection and insertional mutagenesis. mRNA can be regulated in terms of in vivo half-life and immunogenicity through various modifications and delivery methods. Production of mRNA vaccines The production of mRNA vaccines involves in vitro transcription (IVT) of the optimised mRNA sequence. This process allows for the rapid and scalable manufacturing of mRNA vaccines. High yields of IVT mRNA can be obtained, making the production process cost-effective. Making mRNA more stable and highly translatable is achievable through modifications. Efficient in vivo delivery can be achieved by formulating mRNA into carrier molecules. The choice of carrier and the size of the mRNA-carrier complex can also modulate the cytokine profile induced by mRNA delivery. Current mRNA vaccine approaches (Figure 1) There are several current mRNA vaccine approaches being explored. These include the development of mRNA vaccines against infectious diseases and various types of cancer. mRNA vaccines have shown promising results in both animal models and humans. Cancer vaccines Cancer vaccines are a type of immunotherapy that aim to stimulate the body's immune system to recognise and destroy cancer cells. These vaccines work by introducing specific antigens, which are substances that can stimulate an immune response, into the body. The immune system then recognises these antigens as foreign and mounts an immune response against them, targeting and destroying cancer cells that express these antigens. There are different types of cancer vaccines, including personalised vaccines and predefined shared antigen vaccines. Personalised vaccines are tailored to each patient and are designed to target specific mutations or antigens present in their tumor. These vaccines are created by identifying tumor-specific antigens by sequencing the patient's tumor DNA and predicting which antigens are most likely to elicit an immune response. These antigens are then used to create a vaccine that is specific to that patient's tumor. On the other hand, predefined shared antigen vaccines are designed to target antigens that are commonly expressed in certain types of cancer. These vaccines can be used in multiple patients with the same type of cancer and are not personalised to each individual. The antigens used in these vaccines are selected based on their ability to induce an immune response and their potential to be recognised by T cells. Despite the promising potential of cancer vaccines, their clinical progress is limited, and skepticism surrounds their effectiveness. While there have been some examples of vaccines that have shown systemic regression of tumors and prolonged survival in small clinical trials, many trials have yielded marginal survival benefits. Challenges such as small trial sizes, resource-intensive approaches, and immune escape of heterogeneous tumors have hindered the field's progress. However, it is important to note that other immunotherapies, such as monoclonal antibodies and chimeric antigen receptor (CAR) T-cell therapies, have also faced challenges and setbacks before eventually achieving success. Therefore, cancer vaccines may also have the potential for eventual success, given their clear rationale and compelling preclinical data. To improve the efficacy of cancer vaccines, researchers are exploring various strategies. These include optimising antigen presentation and immune activation by using adjuvants or agonists of pattern-recognition receptors. Additionally, advancements in sequencing technologies and computational algorithms for epitope prediction allow for the identification of more specific tumor mutagens and the production of personalised neo-epitope vaccines. Neo-epitope vaccines are a type of personalised vaccine that target specific mutations or neo-epitopes present in a patient's tumor. These vaccines exploit the most specific tumor mutagens identified through computational methods and prioritise highly expressed neo-epitopes. They can be given with adjuvants to enhance their immunogenicity. Hence, cancer vaccines hold promise as a potential standard anti-cancer therapy. While their progress has been limited, a clear rationale and compelling preclinical data support their further development. Personalised vaccines targeting specific mutations or antigens present in a patient's tumor, as well as predefined shared antigen vaccines targeting commonly expressed antigens, are being explored. Future of mRNA vaccines mRNA vaccines have emerged as a promising alternative to traditional vaccine approaches due to their high potency, rapid development capabilities, and potential for low-cost manufacture and safe administration. Recent technological advancements have addressed the challenges of mRNA instability and inefficient in vivo delivery, leading to encouraging results in the development of mRNA vaccine platforms against infectious diseases and various types of cancer. Looking ahead, the future of mRNA vaccines holds great potential for further advancements and widespread therapeutic use. Efficient in vivo delivery of mRNA remains a critical area of focus for future development. Researchers are working on improving delivery systems to ensure targeted delivery to specific cells or tissues, thereby enhancing the effectiveness of mRNA vaccines. This includes the development of lipid nanoparticles, viral vectors, and other delivery mechanisms to optimize mRNA delivery and cellular uptake. The success of mRNA vaccines against infectious diseases and cancer has opened doors to exploring their potential in other areas of medicine. Future research may involve the development of mRNA vaccines for autoimmune disorders, allergies, and chronic diseases. The versatility of mRNA technology allows for the rapid adaptation of vaccine candidates to address various medical conditions. One exciting prospect for mRNA vaccines is their potential for personalised medicine. The ability to easily modify the genetic sequence of mRNA allows for the development of personalised vaccines tailored to an individual's specific genetic makeup or disease profile. This could revolutionise preventive medicine by enabling targeted immunisation strategies. Combining mRNA vaccines with other treatment modalities, such as immunotherapies or traditional therapies, could lead to synergistic effects and improved clinical outcomes. The unique properties of mRNA vaccines, such as their ability to induce potent immune responses and modulate the expression of specific proteins, make them attractive candidates for combination therapies. Continued advancements in manufacturing processes will be crucial for the widespread adoption of mRNA vaccines. Efforts are underway to optimise and scale up the production of mRNA vaccines, making them more accessible and cost-effective. This includes refining in vitro transcription reactions and implementing efficient quality control measures. The regulatory landscape surrounding mRNA vaccines will evolve as the field progresses. Regulatory agencies will need to establish guidelines and frameworks specific to mRNA vaccine development and approval. Ensuring safety, efficacy, and quality control will be essential to gain widespread acceptance and public trust in mRNA vaccines. Conclusion mRNA vaccines have shown great potential in revolutionising the field of medicine, particularly in the areas of personalised medicine and preventive medicine. The ability to easily modify the genetic sequence of mRNA allows for the development of personalised vaccines tailored to an individual's specific genetic makeup or disease profile. Furthermore, the unique properties of mRNA vaccines, such as their ability to induce potent immune responses and modulate the expression of specific proteins, make them attractive candidates for combination therapies. However, there are still challenges to overcome, such as ensuring safety, efficacy, quality control, addressing concerns regarding immunogenicity. Nonetheless, with continued advancements in manufacturing processes and regulatory guidelines, the future of mRNA vaccines holds great promise for further advancements and widespread therapeutic use. Efforts to improve in vivo delivery systems and explore the potential of mRNA vaccines in other areas of medicine, such as autoimmune disorders and chronic diseases, further contribute to the promising outlook for this technology. Written by Sara Maria Majernikova Related articles: Potential malaria vaccine / Bioinformatics in COVID vaccine production / Personalised medicine REFERENCES Lin, M.J., Svensson-Arvelund, J., Lubitz, G.S. et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer 3, 911–926 (2022). https://doi.org/10.1038/s43018-022-00418-6 Pardi, N., Hogan, M., Porter, F. et al. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 17 , 261–279 (2018). DOI: https://doi.org/10.1038/nrd.2017.243 Project Gallery

  • How rising food prices contribute to malnutrition | Scientia News

    Food deserts Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link How rising food prices contribute to malnutrition 09/07/25, 14:18 Last updated: Published: 18/08/23, 20:13 Food deserts Introduction Over the past year, there have been news articles explaining how food has become more expensive along with people choosing between heating their homes and paying for groceries. According to the Office for National Statistics, the yearly cost of food and non-alcoholic drink has risen to 19.1% within one year till March 2023. There are various reasons for the food price increase; some of them include Brexit, lack of agricultural productivity and weakening of the British pound. Therefore, the spending habits of the general population have shifted towards ultra-processed foods (UPFs) as they tend to be cheaper compared to minimally processed food (MPFs). Yet, UPFs are really unhealthy with a cohort study discovering that there was an increase in mortality by 18% with each additional serving. For people living in food swamps and deserts, this is a harsh reality for them and there have to be policies to properly address this. The difference between food deserts and swamps Food deserts are places where populations have limited access to healthy and affordable food (i.e. MPFs); there are factors that contribute to this phenomenon such as having lower income or geographic location whereby there is a long distance to the nearest market. However, the increase in food prices as illustrated above can even be a part of the problem. In contrast, there are food swamps, which are areas containing more businesses that sell foods lacking nutritional value, so UPFs as opposed to MPFs. This also relates to the cost of groceries because certain populations living in food swamps are likely to purchase UPFs because they are in closer proximity than MPFs, besides being cheaper. Both situations can contribute not only to obesity, but other forms of malnutrition which will be explored below. Malnutrition To suffer from malnutrition means that there is an imbalance of nutrients and can be categorised based on undernutrition or overnutrition along with disparity in macronutrients (carbohydrates, fats and proteins) and micronutrients (vitamins and minerals). Additionally, there are countries experiencing specific forms of malnutrition such as undernutrition in comparison to others due to ongoing warfare, lack of nutritional education and/or living in poverty. The impact of malnutrition on organs in Figure 1 happens because there is deficiency in certain macronutrients and/or micronutrients, which are essential in the structure and functioning of the body. Another consequence of malnutrition is weight loss because there is depletion of fat and muscle mass in the body, leading to impaired muscle function. Food deserts/ swamps and malnutrition Going back to food deserts/swamps, their impact on malnutrition can be drastic. For example, a review focusing on food insecurity (disrupted food intake/eating patterns due to low income or supplementary resources), suggested a link between malnutrition and food insecurity along with a possible association between malnutrition and gut microbiome being negatively altered, though more research is needed. Another review looking at food insecurity in both US adults and children discovered that in a food-insecure adult’s diet, they had less vegetables, fruits and dairy leading to reduced vitamins A and B6, calcium, magnesium and zinc. How do both reviews relate to food swamps/deserts? Well, populations who are food-insecure may be likely to live in areas where there is a lack of access to healthy foods (i.e. food swamps/ deserts). Conclusion Taking into account everything discussed in this article, it seems that governments in countries where food swamps/deserts are prevalent need to address this issue through effective policies. Otherwise, there could be a future where there is an increase in chronic diseases like malnutrition. There is even potential susceptibility to infectious diseases due to malfunctioning organs stemming from malnutrition. Written by Sam Jarada Related articles: Food at the molecular level / Famine-induced epigenetic changes Project Gallery

  • Immunology | Scientia News

    How diseases start and spread, the body’s defence system, vaccines, policies, and public opinion: unravel the maze of infection and immunity with these articles. Immunology Articles How diseases start and spread, the body’s defence system, vaccines, policies, and public opinion: unravel the maze of infection and immunity with these articles. You may also like: Biology , Medicine , Neuroscience , Chemistry COVID-19 misconceptions Common misconceptions during the COVID-19 pandemic Glossary of COVID-19 terms Key terms used during the COVID-19 pandemic A vaccine for malaria? A new hope for a vaccine for malaria The world vs. the next pandemic Can we see it coming? What steps do we need to take? Are pandemics becoming more severe? Arguments for and against Natural substances And how they can tackle infectious diseases A treatment for HIV? Can the CRISPR-Cas9 system be used as a potential treatment? The mast cell Key cells in the immune system Origins of COVID -19 How COVID-19 caused a pandemic Mechanisms of pathogen invasion How pathogens avoid detection by the immune system Astronauts in space How does little gravity affect the immune system? Ageing and immunity Ageing and its association with immune decline The impacts of global warming on dengue fever Dengue fever is a mosquito-borne Neglected Tropical Disease (NTD) Is the immune system 'selfish'? 'Selfish' genes from a Dawkins perspective, and the Modern Evolutionary Synthesis

bottom of page