top of page

Search Index

329 results found

  • STEM book reviews | Scientia News

    An extensive collection of insightful reviews on the best STEM books available. Whether you're a student looking to deepen your knowledge or something to aid your revision and research, an educator seeking great resources for your classroom, or simply a curious mind passionate about science, technology, engineering, mathematics, medicine and more, you'll find something here to inspire and inform you.  Discover Your Next Great Read Deep Dive into STEM Books Here you can explore an extensive collection of insightful reviews on the best STEM books available. Whether you're a student looking to deepen your knowledge or something to aid or complement your revision and research, an educator seeking great resources for your classroom, or simply a curious mind passionate about science, technology, engineering, mathematics, medicine and more, you'll find something here to inspire and inform you. Our Curated Selections: Intern Blues by Robert Marion, M.D. The Emperor of All Maladies by Siddhartha Mukherjee

  • STEM research and resources for students | Scientia News

    Scientia News is full of STEM blogs, articles and resources freely available across the globe for students. Browse all of our fascinating content written by students and professionals showing their passion in STEM and the other sciences. Log In Welcome to Scientia News DELIVERING INFORMATIVE CONTENT Scientia News is full of STEM blogs, articles and resources freely available across the globe for students. Browse all of our fascinating content written by students and professionals showing their passion in STEM and other sciences. We hope this platform helps you discover something that inspires your curiosity, and encourages you to learn more about important topics in STEM. Meet the Official Team NAVIGATE AND CLICK THE PHOTOS BELOW TO LEARN MORE ABOUT US! To play, press and hold the enter key. To stop, release the enter key. To play, press and hold the enter key. To stop, release the enter key. To play, press and hold the enter key. To stop, release the enter key. Latest Articles medicine Does insomnia run in families? Here's what genetics tells us View More cancer Novel neuroblastoma driver: a potential target for therapeutics View More psychology Postpartum depression in adolescent mothers View More psychology An exploration of the attentional blink in rapid serial visual presentation studies View More CONTACT CONTACT US Scientia News welcomes anyone who wants to share their ideas and write for our platform. If you are interested in realising your writing potential with us AND live in the UK; and/ or would like to give feedback: Email us at scientianewsorg@gmail.com or fill in our GET IN TOUCH form below and we'll be in contact... Follow us on our socials for the latest updates. Comment, like and share! Join our mailing list below for latest site content. You can also sign up to become a site member . SUBSCRIPTION Join our mailing list to receive alerts for new articles and other site content. Be sure to check your spam/ junk folders in case emails are sent there. Email Subscribe GET IN TOUCH First Name Last Name Email Message Send Thanks for submitting!

  • The genesis of life | Scientia News

    Life's origins Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The genesis of life 11/07/25, 10:04 Last updated: Published: 23/11/23, 11:22 Life's origins Did the egg or the chicken come first? This question is often pondered regarding life’s origin and how biological systems came into play. How did chemistry move to biology to support life? And how have we evolved into such complex organisms? The ingredients, conditions and thermodynamically favoured reactions hold the answer, but understanding the inner workings of life’s beginnings poses a challenge for us scientists. Under an empirical approach, how can we address these questions if these events occurred 3.7 billion years ago? The early atmosphere of the Earth To approach these questions, it is relevant to understand the atmospheric contents of the primordial Earth. With a lack of oxygen, the predominant make-up included C02, NH3 and H2, creating a reducing environment for the drive of chemical reactions. When the earth cooled, and the atmosphere underwent condensation, pools of chemicals were made - this is known as “primordial soup”. It is thought that reactants could collide from this “soup” to synthesise nucleotides by forming nitrogenous bases and bonds, such as glycosidic or hydrogen bonds. Such nucleotide monomers were perhaps polymerised to create long chains for nucleic acid synthesis, that is, RNA, via this abiotic synthesis. Thus, if we have nucleic acids, genetic information could have been stored and passed later down the line, allowing for our eventual evolution. Conditions for nucleic acid synthesis The environment supported the formation of monomers for said polymerisation. For example, hydrothermal vents could have provided the reducing power via protons, allowing for the protonation of structures and providing the free energy for bond formation. Biology, of course, relies on protons for the proton gradient in ATP synthesis at the mitochondrial membrane and, in general, acid-base catalysis in enzymatic reactions. Therefore, it is safe to say protons played a vital role in life’s emergence. The eventual formation of structures by protonation and deprotonation provides the enzymatic theory of life’s origins. That is, some self-catalytic ability for replication in a closed system and the evolution of complex biological units. This is the “RNA World” theory, which will be discussed later. Another theory is wet and dry cycling at the edge of hydrothermal pools. This theory Is provided by David Deamer, who suggests that nucleic acid monomers placed in acidic (pH 3) and hot (70-90 degrees Celsius) pools could undergo condensation reactions for ester bond formation. It highlights the need for low water activity and a “kinetic trap” in which the condensation reaction rate exceeds the hydrolysation rate. The heat of the pool provides a high activation energy for the localised generation of polymers without the need for a membrane-like compartment. But even if this was possible and nucleic acids could be synthesised, how could we “keep them safe”? This issue is addressed by the theory of "protocells" formed from fatty acid vesicles. Jack Szostak suggests phase transition (that is pH decrease) allowed for the construction of bilayer membranes from fatty acid monomers, which is homologous to what we see now in modern cells. The fatty acids in these vesicles have the ability to “flip-flop” to allow for the exchange of nutrients or nucleotides in and out of the vesicles. It is suggested that clay encapsulated nucleotide monomers were brought into the protocell by this flip-flop action. Vesicles could grow by competing with surrounding smaller vesicles. Larger vesicles are thought to be those harbouring long polyanionic molecules - that is RNA - which creates immense osmotic pressure pushing outward on the protocell for absorption of smaller vesicles. This represents the Darwinian “survival of the fittest” theory in which cells with more RNA are favoured for survival. The RNA World Hypothesis DNA is often seen as the “Saint” of all things biology, given its ability to store and pass genetic information to mRNA and then mRNA can use this information to synthesise polypeptides. This is the central dogma of course. However, the RNA world hypothesis suggests that RNA arose first due to its ability to form catalytic 3D structures and store genetic information that could have allowed for further synthesis of DNA. This makes sense when you think about how the primer for DNA replication is formed out of RNA. If RNA did not come first, how could DNA replication be possible? Many other scenarios suggest RNA evolution preceded that of DNA. So, if RNA arose as a simple polymer, its ability to form 3D structures could have allowed ribozymes (RNA with enzymatic function) within these protocells. Ribozymes, such as RNA ligase and polymerase, could have allowed for self-replication, and then mutation in primary structure could have allowed evolution to occur. If we have a catalyst, in a closed system, with nutrient exchange, then why would life’s formation not be possible? But how can we show that RNA can arise in this way? The answer to this is SELEX - selective evolution of ligands by exponential enrichment (5). This system was developed by Jack Szostak, who wanted to show the evolution of complex RNA, ribozymes in a test tube was possible. A pool of random, fragmented RNA molecules can be added to a chamber and run through a column with beads. These beads harbour some sequence or attraction to the RNA molecules the column is selecting for. Those that attach can be eluted, and those that do not can be disregarded. The bound RNA can be rerun through SELEX, and the conditions in the column can be more specific in that only the most complementary RNAs bind. This allowed for the development of RNA ligase and RNA polymerase - thus, self-replication of RNA is possible. SELEX helps us understand how the evolution of RNA in the primordial Earth could have been possible. This is also established by meteorites, such as carbon chondrites that burnt up in the earth’s atmosphere encapsulating the organic material in the centre. Chondrites found in Antarctica have been found to contain 80+ amino acids (some of which are not compatible with life). These chondrites also included nucleobases. So, if such monomers can be synthesised in a hostile environment in outer space/in our atmosphere, then the theory of abiotic synthesis is supported. Furthermore, it is relevant to address the abiotic synthesis of amino acids since the evolution of catalytic RNA could have some complementarity for polypeptide synthesis. Miller and Urey (1953) set up a simple experiment containing gas representing the early primordial earth (Methane, hydrogen, ammonia, water). They used a conduction rod to provide the electrical discharge (meant to simulate lightning or volcanic eruption) to the gases and then condensed them. The water in the other chamber turned pink/ brown. Following chromatography, they identified amino acids in the mixture. These simple manipulations could have been homologous to early life. Conclusion The abiotic synthesis of nucleotides and amino acids for their later polymerisation would support the theories that address chemistry moving toward biological life. Protocells containing such polymers could have been selected based on their “fitness” and these could have mutated to allow for the evolution of catalytic RNA. The experiments mentioned represent a small fragment of those carried out to answer the questions of life’s origins. The evidence provides a firm ground for the emergence of life to the complexity of what we know today. Written by Holly Kitley Project Gallery

  • The game of life | Scientia News

    Maths till 18? No! All subjects till 18! Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The game of life 11/07/25, 10:03 Last updated: Published: 20/11/23, 11:22 Maths till 18? No! All subjects till 18! I am a Maths graduate, a Maths teacher, and an all-rounder academic, yet in my twenties, when I began the process of buying a home, I had no idea where to start. I did not know how to get a mortgage, what shared ownership was, or when to get a solicitor involved. This is a problem, and this, I believe, is what needs to be taught from 16-18 years of age. The skills, opportunities, and options for young adults to simply move forward in this world. My suggestion: (for those who do not take A-Levels) To create a well-structured, virtual reality, cross-curricular running project about life, a little bit like an AI version of the ‘game of life.’ Students can begin the project in a virtual reality world of choice, and then slowly branch out depending on their interests. They can learn CV building skills , go to an AI job centre, choose the job they want to do and learn the skills for it by conducting research and completing online courses . At the same time within the project, students can be given a budget according to the job they are training for, in which they can forecast their savings and plan for the route that they would take in purchasing a property. Students would need to learn about shared ownership, the pros and cons of renting, the deposits needed for mortgage, all within a game format, like a PS5 game. This aspect of the project would be heavy with Maths. Students would be expected to write a final assessment piece summarising each of their decisions and why, which would include high levels of the English curriculum. To differentiate the project, we could ask students to use Geography, to find a country in the world where their skills may be more in demand and ask them to consider the possibility of relocating to another country for work, which would broaden the horizon of the project massively. They could look at tax laws in different countries, such as Dubai, and how that would benefit them in terms of salary, but what the importance of tax is in a country too. Students would get to explore countries which have free healthcare and schooling vs which countries do not. This would work on their analysis and deeper thinking skills. The game-like format of this project would be ideal for disengaged students who did not thrive with the traditional style of teaching in schools. We could include potential for earning points in the ‘game’ for each additional piece of research they conduct, and a real-life benefit to earning those points too, such as Amazon vouchers, as rewards. A project like this would enable all curriculums to get involved in, for students to understand the world better and a massive scope for AI, potentially asking Meta to design it, who are at the forefront of virtual reality. To make it work, the project would require teachers from all fields to come together to form a curriculum that is inclusive, considers British Values and mirrors the real-life that we live in today. There is potential for psychologist to be involved to ensure we are considering mental health implications as well as parents/guardians, who would need to be onboard with this too. In conclusion, I believe that 16-18 years do need guided learning that is standardised, but I do not think it is as simple as pushing Maths on to them. The future generation and their society will benefit from a holistic guided route to life, which will make them informed and educated individuals in topics that matter to THEM, based on THEIR lives, not chosen by us. Give students control over their education, over their lives... Written by Sara Altaf Project Gallery

  • The cost of coats: celebrating 55 years of vicuña conservation | Scientia News

    Vicuñas are members of the camelid family Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The cost of coats: celebrating 55 years of vicuña conservation 11/07/25, 10:02 Last updated: Published: 09/10/24, 14:03 Vicuñas are members of the camelid family This is article no. 1 in a series on animal conservation. Next article: Conserving the California condor . Is the softest coat in the world worth the near-extinction of a species? Just ask a vicuña, the wild cousin of llamas and alpacas. After being widely hunted in South America in the mid-20th century, the vicuña population thrives. Their recovery is considered one of the earliest successes in modern wildlife conservation, setting a precedent for sustainable development. This October marks the 55th anniversary of the first international agreement to conserve these furry friends. In its honour, here is the story of vicuña conservation. What are vicuñas? Vicuñas have a unique biology. They are members of the camelid family ー which includes llamas, alpacas, and camels. Vicuñas live in high-altitude arid grasslands in South America (Figure 1). Their families consist of one alpha male, multiple females, and their offspring – while bachelor males form their own groups. Unlike other camelids, vicuña families remain together for most of the year. Vicuñas are herbivores with characteristic grazing and defecating behaviours that shape the surrounding plant community. Therefore, their ecological role cannot be underestimated. How vicuñas nearly went extinct However, vicuñas are hunted by humans because their wool is the finest and softest in the world. They are difficult to domesticate, and their habitat has no hiding spots, so they are easy poaching targets. Their intricate social structure means killing one vicuña has unforeseen impacts on the rest of the population. Consequently, expensive wool comes at the expense of a fascinating species. Demand for ultra-fine vicuña wool made hunting the animals a lucrative business in South America. Although 15th-16th century Inca rulers wore high-end clothing made from vicuña wool, it was usually harvested without killing the animals. European colonisation in the 19th-20th centuries opened vicuña wool to a wealthy international market, making poaching more popular and reckless than under Inca rule. These inconsiderate hunting practices continued after South American countries gained independence. As the luxurious wool remained in demand, the vicuña population decreased by over 99% between 1940 and 1965. Conservation policies saved the vicuñas South American national governments soon realised that indiscriminate vicuña hunting had to stop. As well as being ecologically important, vicuñas should not be allowed to go extinct because of their economic value. Peru had the largest proportion of the vicuña population, so in 1966 its government set up a nature reserve called Pampa Galeras. Creating this reserve involved negotiating with rural communities so that both people and vicuñas benefitted, for example, by employing locals at the reserve. This was one of the earliest examples of what is now known as sustainable development, which provides rural communities with a way of life that works alongside ecosystems rather than damaging them. Scientists found that vicuñas changed their social structures inside Pampa Galeras to maximise reproductive success. A 1987 study suggested that because females had more time to graze without the constant threat of predators and poachers, their reproductive success was higher. The creation of this reserve was the first of many successful steps South America took in the 1960s towards vicuña recovery. In October 1969, Argentina, Chile, Ecuador, and Bolivia joined Peru in the efforts to conserve vicuñas. Their Convention for the Conservation of the Vicuña banned international trade and massively restricted hunting. Since the convention successfully led to a rise in vicuña numbers, it was modified in 1979 so that sustainable vicuña wool could be sold. Meanwhile, conservation laws were being established in the United States and European Union, the wildlife trade regulator CITES was established, and public awareness about the biodiversity crisis was rising. This international effort saved vicuñas from extinction, and today there are 350,000 to 500,000 of them ( Figure 2 ). Vicuñas were classified as ‘least concern’ for conservation by the International Union for Conservation of Nature in 2018. Climate change, mite infestations, and competition with livestock are affecting the population today – but to a much smaller extent than poaching was. Thus, vicuñas are back to freely roaming the Andes. Conclusion Conserving the vicuña relied on political willpower and community involvement. In the 55 years since, ecologists have used this charismatic and distinctive animal to galvanise wildlife conservation worldwide. The vicuña’s story should also remind us that what we wear has financial and ecological costs. Written by Simran Patel Related articles: Conservation of marine igunanas / Gal á gapos tortoises REFERENCES Acebes, P., Wheeler, J., Baldo, J.L., Tuppia, P., Lichtenstein, G., Hoces, D. & Franklin, W.L. (2018) Vicuna: Vicugna vicugna . The IUCN Red List of Threatened Species 2018 . Available from: https://ri.conicet.gov.ar/handle/11336/178499 (Accessed 12th September 2024). Bosch, P.C. & Svendsen, G.E. (1987) Behavior of Male and Female Vicuna (Vicugna vicugna Molina 1782) as It Relates to Reproductive Effort. Journal of Mammalogy . 68 (2): 425–429. Available from: https://doi.org/10.2307/1381491 (Accessed 23rd September 2024). González, B. et al. (2019) Phylogeography and Population Genetics of Vicugna vicugna : Evolution in the Arid Andean High Plateau. Frontiers in Genetics . 10. Available from: https://doi.org/10.3389/fgene.2019.00445 (Accessed 22nd September 2024). Karandikar, H., Donadio, E., Smith, J.A., Bidder, O.R. & Middleton, A.D. (2023) Spatial ecology of the Vicuña ( Lama vicugna ) in a high Andean protected area. Journal of Mammalogy . 104 (3): 509–518. Available from: https://doi.org/10.1093/jmammal/gyad018 (Accessed 11th September 2024). Lyster, S. (1985) VICUNA. In: International Wildlife Law: An Analysis of International Treaties concerned with the Conservation of Wildlife . Cambridge: Cambridge University Press: 88–94. Reider, K.E. & Schmidt, S.K. (2021) Vicuña dung gardens at the edge of the cryosphere. Ecology . 102 (2): 1–3. Available from: https://www.jstor.org/stable/26998110 (Accessed 11th September 2024). Vilá, B. & Arzamendia, Y. (2022) Weaving a vicuña shawl. Pastoralism . 12 (1): 46. Available from: https://doi.org/10.1186/s13570-022-00260-6 (Accessed 11th September 2024). Wakild, E. (2020) Saving the Vicuña: The Political, Biophysical, and Cultural History of Wild Animal Conservation in Peru, 1964–2000. The American Historical Review . 125 (1): 54–88. Available from: https://doi.org/10.1093/ahr/rhz939 (Accessed 11th September 2024). Yacobaccio, H. (2009) The Historical Relationship Between People and the Vicuña. In: Gordon, I.J., ed. The Vicuña: The Theory and Practice of Community Based Wildlife Management . Boston, MA: Springer US: 7–20. Project Gallery

  • The future of semiconductor manufacturing | Scientia News

    Through photonic integration Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The future of semiconductor manufacturing 11/07/25, 10:03 Last updated: Published: 22/12/23, 15:11 Through photonic integration Recently the researchers from the University of Sydney developed a compact photonic semiconductor chip by heterogeneous material integration methods which integrates an active electro-optic (E-O) modulator and photodetectors in a single chip. The chip functions as a photonic circuit (PIC) offering a 15 gigahertz of tunable frequencies with a spectral resolution of only 37 MHz and is able to expand the radio frequency bandwidth (RF) to precisely control the information flowing within the chip with the help of advanced photonic filter controls. The application of this technology extends to various fields: • Advanced Radar: The chip's expanded radio-frequency bandwidth could significantly enhance the precision and capabilities of radar systems. • Satellite Systems: Improved radio-frequency performance would contribute to more efficient communication and data transmission in satellite systems. • Wireless Networks: The chip has the potential to advance the speed and efficiency of wireless communication networks. • 6G and 7G Telecommunications: This technology may play a crucial role in the development of future generations of telecommunications networks. Microwave Photonics (MWP) is a field that combines microwave and optical technologies to provide enhanced functionalities and capabilities. It involves the generation, processing, and distribution of microwave signals using photonic techniques. An MWP filter is a component used in microwave photonics systems to selectively filter or manipulate certain microwave frequencies using photonic methods (see Figure 1 ). These filters leverage the unique properties of light and its interaction with different materials to achieve filtering effects in the microwave domain. They can be crucial in applications where precise control and manipulation of microwave signals are required. MWP filters can take various forms, including fiber-based filters, photonic crystal filters and integrated optical filters. These filters are designed to perform functions such as wavelength filtering, frequency selection and signal conditioning in the microwave frequency range. They play a key role in improving the performance and efficiency of microwave photonics systems. The MWP filter operates through a sophisticated integration of optical and microwave technologies as depicted in the diagram. Beginning with a laser as the optical carrier, the photonic signal is then directed to a modulator where it interacts with an input Radio-Frequency (RF) signal. The modulator dynamically influences the optical carrier's intensity, phase or frequency based on the RF input. Subsequently, the modulated signal undergoes processing to shape its spectral characteristics in a manner dictated by a dedicated processor. This shaping is pivotal for achieving the desired filtering effect. The processed optical signal is then fed into a photodiode for conversion back into an electrical signal. This conversion is based on the variations induced by the modulator on the optical carrier. The final output which is represented by the electrical signal reflects the filtered and manipulated RF signal which demonstrates the MWP's ability in leveraging both optical and microwave domains for precise and high-performance signal processing applications. Extensive research has been conducted in the field of MWP chips, as evidenced by a thorough examination in Table 1 . This table compares recent studies based on chip material type, filter type, on-chip component integration, and working bandwidth. Notably, previous studies demonstrated noteworthy advancements in chip research despite the dependence on external components. What distinguishes the new chip is its revolutionary integration of all components into a singular chip which is a significant breakthrough that sets it apart from previous attempts in the field. Here the term "On-chip E-O" involve the integration of electro-optical components directly onto a semiconductor chip or substrate. This integration facilitates the interaction between electrical signals (electronic) and optical signals (light) within the same chip. The purpose is to enable the manipulation, modulation or processing of optical signals using electrical signals typically in the form of voltage or current control. Key components of on-chip electro-optical capabilities include: 1. Modulators which alter the characteristics of an optical signal in response to electrical input which is crucial for encoding information onto optical signals. 2. Photonic detectors convert optical signals back into electrical signals extracting information for electronic processing. 3. Waveguides guide and manipulate the propagation of light waves within the chip, routing optical signals to various components. 4. Switches routes or redirects the optical signals based on electrical control signals. This integration enhances compactness, energy efficiency, and performance in applications such as communication systems and optical signal processing. "FSR-free operation" refers to Free Spectral Range (FSR) which is a characteristic of optical filters and resonators. FSR is the separation in frequency between two consecutive resonant frequencies or transmission peaks. The column "FSR-free operation" indicates whether the optical processing platform operates without relying on a specific or fixed Free Spectral Range. It means that its operation is not bound or dependent on a particular FSR. This could be advantageous in scenarios where flexibility in the spectral range or the ability to operate over a range of frequencies without being constrained by a specific FSR is desired. "On-chip MWP link improvement" refers to enhancements made directly on a semiconductor chip to optimize the performance of MWP links. These improvements aim to enhance the integration and efficiency of communication or signal processing links that involve both microwave and optical signals. The term implies advancements in key aspects such as data transfer rates, signal fidelity and overall link performance. On-chip integration brings advantages such as compactness and reduced power consumption. The manufacturing of the photonic integrated circuit (PIC) involves partnering with semiconductor foundries overseas to produce the foundational chip wafer. This new chip technology will play a crucial role in advancing independent manufacturing capabilities. Embracing this type of chip architecture enables a nation to nurture the growth of its autonomous chip manufacturing sector by mitigating reliance on international foundries. The extensive chip delays witnessed during the 2020 COVID pandemic underscored the global realization of the chip market's significance and its potential impact on electronic manufacturing. Written by Arun Sreeraj Related articles: Advancements in semi-conductor technology / The search for a room-temperature superconductor / Silicon hydrogel lenses / Mobile networks Project Gallery

  • The dopamine connection | Scientia News

    How your gut influences your mood and behaviour Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The dopamine connection 11/07/25, 10:02 Last updated: Published: 25/03/24, 12:01 How your gut influences your mood and behaviour Introduction to dopamine Dopamine is a neurotransmitter derived from an amino acid called phenylalanine, which must be obtained through the diet, through foods such as fish, meat, dairy and more. Dopamine is produced and released by dopaminergic neurons in the central nervous system and can be found in different brain regions. The neurotransmitter acts via two mechanisms: wiring transmission and volume transmission. In wiring transmission, dopamine is released to the synaptic cleft and acts on postsynaptic dopamine receptors. In volume transmission, extracellular dopamine arrives at neurons other than postsynaptic ones. Through methods such as diffusion, dopamine then reaches receptors in other neurons that are not in direct contact with the cell that has released the neurotransmitter. In both mechanisms, dopamine binds to the receptors, transmitting signals between neurons and affecting mood and behaviour. The link between dopamine and gut health Dopamine has been known to result in positive emotions, including pleasure, satisfaction and motivation, which can be influenced by gut health. Therefore, what you eat and other factors, including motivation, could impact your mood and behaviour. This was proven by a study (Hamamah et al., 2022), which looked at the bidirectional gut-brain connection. The study found that gut microbiota was important in maintaining the concentrations of dopamine via the gut-brain connection, also known as the gut microbiota-brain axis or vagal gut-to-brain axis. This is the communication pathway between the gut microbiota and the brain facilitated by the vagus nerve, and it is important in the neuronal reward pathway, which regulates motivational and emotional states. Activating the vagal gut-to-brain axis, which leads to dopamine release, suggests that modulating dopamine levels could be a potential treatment approach for dopamine-related disorders. Some examples of gut microbiota include Prevotella, Bacteroides, Lactobacillus, Bifidobacterium, Clostridium, Enterococcus, and Ruminococcus , and they can affect dopamine by modulating dopaminergic activity. These gut microbiota are able to produce neurotransmitters, including dopamine, and their functions and bioavailability in the central nervous system and periphery are influenced by the gut-brain axis. Gut dysbiosis is the disturbance of the healthy intestinal flora, and it can lead to dopamine-related disorders, including Parkinson's disease, ADHD, depression, anxiety, and autism. Gut microbes that produce butyrate, a short-chain fatty acid, positively impact dopamine and contribute to reducing symptoms and effects seen in neurodegenerative disorders. Dopamine as a treatment It is important to understand the link between dopamine and gut health, as this could provide information about new therapeutic targets and improve current methods that have been used to prevent and restore deficiencies in dopamine function in different disorders. Most cells in the immune system contain dopamine receptors, allowing processes such as antigen presentation, T-cell activation, and inflammation to be regulated. Further research into this could open up a new possibility for dopamine to be used as a medication to treat diseases by changing the activity of dopamine receptors. Therefore, dopamine is important in various physiological processes, both in the central nervous and immune systems. For example, studies have shown that schizophrenia can be treated with antipsychotic medications which target dopamine neurotransmission. In addition, schizophrenia has also been treated by targeting the dysregulation (decreasing the amount) of dopamine transmission. Studies have shown promising results regarding dopamine being used as a form of treatment. Nevertheless, further research is needed to understand the interactions between dopamine, motivation and gut health and explore how this knowledge can be used to create medications to treat conditions. Conclusion The bidirectional gut-brain connection shows the importance of gut microbiota in controlling dopamine levels. This connection influences mood and behaviour but also has the potential to lead to new and innovative dopamine-targeted treatments being developed (for conditions including dopamine-related disorders). For example, scientists could target and manipulate dopamine receptors in the immune system to regulate the above mentioned processes: antigen presentation, T-cell activation, and inflammation. While current research has shown some promising results, further investigations are needed to better comprehend the connection between gut health and dopamine levels. Nevertheless, through consistent studies, scientists can gain a deeper understanding of this mechanism to see how changes in gut microbiota could affect dopamine regulation and influence mood and behaviour. Written by Naoshin Haque Related articles: the gut microbiome / Crohn's disease / Microbes in charge Project Gallery

  • The endless possibilities of iPSCs and organoids | Scientia News

    iPSCs are one of the most powerful tools of biosciences Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The endless possibilities of iPSCs and organoids 11/07/25, 10:02 Last updated: Published: 20/01/24, 11:50 iPSCs are one of the most powerful tools of biosciences On the 8th of October 2012, the Nobel Prize in Physiology was given to Shinya Yamanaka and John B. Gurdon for a groundbreaking discovery; induced Pluripotent Stem Cells (iPSCs). The two scientists discovered that mature, specialised cells can be reprogrammed to their initial state and consequently transformed into any cell type. These cells can be used to study disease, examine genetic variations and test new treatments. The science behind iPSCs The creation of iPSCs is based on the procedure of cell potency during mammalian development. While the organism is still in the embryonic stage, the first cell developed is a totipotent stem cell, which has the unique ability to differentiate into any cell type in the human body. “Totipotent” refers to the cell’s potential to give rise to all cell types and tissues needed to develop an entire organism. As the totipotent cell grows, it develops into the pluripotent cell, which can differentiate into the three types of germ layers; the endoderm line, the mesoderm line and the ectoderm line. The cells of each line then develop into multipotent cells, which are derived into all types of human somatic cells, such as neuronal cells, blood cells, muscle cells, skin cells, etc. Creation of iPSCs and organoids iPSCs are produced through a process called cellular reprogramming, which involves the reprogramming of differentiated cells to revert to a pluripotent state, similar to that of embryonic stem cells. The process begins with selecting any type of somatic cell from the individual (in most cases, the individual is a patient). Four transcription factors, Oct4, Sox2, Klf4 and c-Myc, are introduced into the selected cells. These transcription factors are important for the maintenance of pluripotency. They are able to activate the silenced pluripotency genes of the adult somatic cells and turn off the genes associated with differentiation. The somatic cells are now transformed into iPSCs, which can differentiate into any somatic cell type if provided with the right transcription factor. Although iPSCs themselves have endless applications in biosciences, they can also be transformed into organoids, miniature three-dimensional organ models. To create organoids, iPSCs are exposed to a specific combination of signalling molecules and growth factors that mimic the development of the desired organ. Current applications of iPSCs As mentioned earlier, iPSCs can be used to study disease mechanisms, develop personalised therapies and test the action of drugs in human-derived tissues. iPSCs have already been used to model cardiomyocytes, neuronal cells, keratinocytes, melanocytes and many other types of cells. Moreover, kidney, liver, lung, stomach, intestine, and brain organoids have already been produced. In the meantime, diseases such as cardiomyopathy, Alzheimer’s disease, cystic fibrosis and blood disorders have been successfully modelled and studied with the use of iPSCs. Most importantly, the use of iPSCs in all parts of scientific research reduces or replaces the use of animal models, promising a more ethical future in biosciences. Conclusion iPSCs are one of the most powerful tools of biosciences at the moment. In combination with gene editing techniques, iPSCs give accessibility to a wide range of tissues and human disorders and open the doors for precise, personalised and innovative therapies. iPSCs not only promise accurate scientific research but also ethical studies that minimise the use of animal models and embryonic cells. Written by Matina Laskou Related articles: Organoids in drug discovery / Introduction to stem cells Project Gallery

  • The exciting potential of mRNA vaccines | Scientia News

    Unleashing the power of mRNA: revolutionising medicine with personalised vaccines Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The exciting potential of mRNA vaccines 11/07/25, 10:03 Last updated: Published: 03/12/24, 12:19 Unleashing the power of mRNA: revolutionising medicine with personalised vaccines Basic mRNA vaccine pharmacology Basic mRNA vaccine pharmacology involves the study of two types of RNA used as vaccines: non-replicating mRNA and self-amplifying RNA. Non-replicating mRNA-based vaccines encode the antigen of interest and contain untranslated regions (UTRs) at both ends. Self-amplifying RNAs, on the other hand, encode both the antigen and the viral replication machinery, allowing for intracellular RNA amplification and abundant protein expression. For successful protein production in mRNA therapeutics, the optimal translation of in vitro transcribed (IVT) mRNA is crucial. Factors such as the length of the poly(A) tail, codon usage, and sequence optimisation can influence translation efficiency and accuracy. Adding an optimal length of poly(A) to mRNA is necessary for efficient translation. This can be achieved by directly incorporating it from the encoding DNA template or by using poly(A) polymerase. Codon usage also plays a role in protein translation. Replacing rare codons with frequently used synonymous codons, which have abundant cognate tRNA in the cytosol, can enhance protein production from mRNA. However, the accuracy of this model has been subject to questioning. Optimally translated IVT mRNA encoding mRNA IVT mRNA plays a crucial role in mRNA vaccines as it is designed for optimal translation, ensuring efficient protein production. To achieve this, a 5ʹ cap structure is added, which is essential for efficient protein synthesis. Different versions of 5ʹ caps can be added during or after the transcription process. Furthermore, the poly(A) tail plays a significant regulatory role in mRNA translation and stability. Sequence optimisation is another critical factor that can enhance mRNA levels and protein expression. Increasing the G:C content has been shown to elevate steady-state mRNA levels in vitro and improve protein expression in vivo. Furthermore, modifying the codon composition or introducing modified nucleosides can positively influence protein expression. However, it is important to note that these sequence engineering techniques may impact mRNA secondary structure, translation kinetics, accuracy, protein folding, as well as the expression of alternative reading frames and cryptic T-cell epitopes. Sequence optimisation for protein translation Sequence optimisation plays a crucial role in the development of mRNA vaccines. It involves modifying the mRNA sequence to improve the efficiency of protein translation. By optimising the sequence, researchers can enhance the expression and stability of therapeutic mRNAs. However, the immunogenicity of exogenous mRNA is a concern, as it can trigger a response from various innate immune receptors. In some cases, encoding mRNA in the hypothalamus may even elicit a physiological response. Despite initial promising outcomes, the development of mRNA therapeutics has been hindered by concerns regarding mRNA instability, high innate immunogenicity, and inefficient in vivo delivery. As a result, DNA-based and protein-based therapeutic approaches have been preferred in the past. Modulation of immunogenicity Modulation of immunogenicity is a crucial aspect of mRNA vaccine development. Researchers aim to design mRNA vaccines that elicit a strong immune response while minimising adverse reactions. This involves careful selection of antigens and optimisation of the mRNA sequence to enhance immunogenicity. Self-replicating RNA vaccines and adjuvant strategies, such as TriMix, have shown increased immunogenicity and effectiveness. The immunostimulatory properties of mRNA can be further enhanced by including adjuvants. The size of the mRNA-carrier complex and the level of innate immune sensing in targeted cell types can influence the immunogenicity of mRNA vaccines. Advantages of mRNA vaccines mRNA vaccines offer several advantages over conventional vaccine approaches. First, they have high potency, meaning they can induce a strong immune response. Second, they have a capacity for rapid development, allowing for quick vaccine production in response to emerging infectious diseases or new strains. Third, mRNA vaccines have the potential for rapid, inexpensive, and scalable manufacturing, mainly due to the high yields of in vitro transcription reactions. Additionally, mRNA vaccines are minimal genetic vectors, avoiding anti-vector immunity, and can be administered repeatedly. However, recent technological innovations and research investments have made mRNA a promising therapeutic tool in vaccine development and protein replacement therapy. mRNA has several advantages over other vaccine platforms, including safety and efficacy. It is non-infectious and non-integrating, reducing the risk of infection and insertional mutagenesis. mRNA can be regulated in terms of in vivo half-life and immunogenicity through various modifications and delivery methods. Production of mRNA vaccines The production of mRNA vaccines involves in vitro transcription (IVT) of the optimised mRNA sequence. This process allows for the rapid and scalable manufacturing of mRNA vaccines. High yields of IVT mRNA can be obtained, making the production process cost-effective. Making mRNA more stable and highly translatable is achievable through modifications. Efficient in vivo delivery can be achieved by formulating mRNA into carrier molecules. The choice of carrier and the size of the mRNA-carrier complex can also modulate the cytokine profile induced by mRNA delivery. Current mRNA vaccine approaches (Figure 1) There are several current mRNA vaccine approaches being explored. These include the development of mRNA vaccines against infectious diseases and various types of cancer. mRNA vaccines have shown promising results in both animal models and humans. Cancer vaccines Cancer vaccines are a type of immunotherapy that aim to stimulate the body's immune system to recognise and destroy cancer cells. These vaccines work by introducing specific antigens, which are substances that can stimulate an immune response, into the body. The immune system then recognises these antigens as foreign and mounts an immune response against them, targeting and destroying cancer cells that express these antigens. There are different types of cancer vaccines, including personalised vaccines and predefined shared antigen vaccines. Personalised vaccines are tailored to each patient and are designed to target specific mutations or antigens present in their tumor. These vaccines are created by identifying tumor-specific antigens by sequencing the patient's tumor DNA and predicting which antigens are most likely to elicit an immune response. These antigens are then used to create a vaccine that is specific to that patient's tumor. On the other hand, predefined shared antigen vaccines are designed to target antigens that are commonly expressed in certain types of cancer. These vaccines can be used in multiple patients with the same type of cancer and are not personalised to each individual. The antigens used in these vaccines are selected based on their ability to induce an immune response and their potential to be recognised by T cells. Despite the promising potential of cancer vaccines, their clinical progress is limited, and skepticism surrounds their effectiveness. While there have been some examples of vaccines that have shown systemic regression of tumors and prolonged survival in small clinical trials, many trials have yielded marginal survival benefits. Challenges such as small trial sizes, resource-intensive approaches, and immune escape of heterogeneous tumors have hindered the field's progress. However, it is important to note that other immunotherapies, such as monoclonal antibodies and chimeric antigen receptor (CAR) T-cell therapies, have also faced challenges and setbacks before eventually achieving success. Therefore, cancer vaccines may also have the potential for eventual success, given their clear rationale and compelling preclinical data. To improve the efficacy of cancer vaccines, researchers are exploring various strategies. These include optimising antigen presentation and immune activation by using adjuvants or agonists of pattern-recognition receptors. Additionally, advancements in sequencing technologies and computational algorithms for epitope prediction allow for the identification of more specific tumor mutagens and the production of personalised neo-epitope vaccines. Neo-epitope vaccines are a type of personalised vaccine that target specific mutations or neo-epitopes present in a patient's tumor. These vaccines exploit the most specific tumor mutagens identified through computational methods and prioritise highly expressed neo-epitopes. They can be given with adjuvants to enhance their immunogenicity. Hence, cancer vaccines hold promise as a potential standard anti-cancer therapy. While their progress has been limited, a clear rationale and compelling preclinical data support their further development. Personalised vaccines targeting specific mutations or antigens present in a patient's tumor, as well as predefined shared antigen vaccines targeting commonly expressed antigens, are being explored. Future of mRNA vaccines mRNA vaccines have emerged as a promising alternative to traditional vaccine approaches due to their high potency, rapid development capabilities, and potential for low-cost manufacture and safe administration. Recent technological advancements have addressed the challenges of mRNA instability and inefficient in vivo delivery, leading to encouraging results in the development of mRNA vaccine platforms against infectious diseases and various types of cancer. Looking ahead, the future of mRNA vaccines holds great potential for further advancements and widespread therapeutic use. Efficient in vivo delivery of mRNA remains a critical area of focus for future development. Researchers are working on improving delivery systems to ensure targeted delivery to specific cells or tissues, thereby enhancing the effectiveness of mRNA vaccines. This includes the development of lipid nanoparticles, viral vectors, and other delivery mechanisms to optimize mRNA delivery and cellular uptake. The success of mRNA vaccines against infectious diseases and cancer has opened doors to exploring their potential in other areas of medicine. Future research may involve the development of mRNA vaccines for autoimmune disorders, allergies, and chronic diseases. The versatility of mRNA technology allows for the rapid adaptation of vaccine candidates to address various medical conditions. One exciting prospect for mRNA vaccines is their potential for personalised medicine. The ability to easily modify the genetic sequence of mRNA allows for the development of personalised vaccines tailored to an individual's specific genetic makeup or disease profile. This could revolutionise preventive medicine by enabling targeted immunisation strategies. Combining mRNA vaccines with other treatment modalities, such as immunotherapies or traditional therapies, could lead to synergistic effects and improved clinical outcomes. The unique properties of mRNA vaccines, such as their ability to induce potent immune responses and modulate the expression of specific proteins, make them attractive candidates for combination therapies. Continued advancements in manufacturing processes will be crucial for the widespread adoption of mRNA vaccines. Efforts are underway to optimise and scale up the production of mRNA vaccines, making them more accessible and cost-effective. This includes refining in vitro transcription reactions and implementing efficient quality control measures. The regulatory landscape surrounding mRNA vaccines will evolve as the field progresses. Regulatory agencies will need to establish guidelines and frameworks specific to mRNA vaccine development and approval. Ensuring safety, efficacy, and quality control will be essential to gain widespread acceptance and public trust in mRNA vaccines. Conclusion mRNA vaccines have shown great potential in revolutionising the field of medicine, particularly in the areas of personalised medicine and preventive medicine. The ability to easily modify the genetic sequence of mRNA allows for the development of personalised vaccines tailored to an individual's specific genetic makeup or disease profile. Furthermore, the unique properties of mRNA vaccines, such as their ability to induce potent immune responses and modulate the expression of specific proteins, make them attractive candidates for combination therapies. However, there are still challenges to overcome, such as ensuring safety, efficacy, quality control, addressing concerns regarding immunogenicity. Nonetheless, with continued advancements in manufacturing processes and regulatory guidelines, the future of mRNA vaccines holds great promise for further advancements and widespread therapeutic use. Efforts to improve in vivo delivery systems and explore the potential of mRNA vaccines in other areas of medicine, such as autoimmune disorders and chronic diseases, further contribute to the promising outlook for this technology. Written by Sara Maria Majernikova Related articles: Potential malaria vaccine / Bioinformatics in COVID vaccine production / Personalised medicine REFERENCES Lin, M.J., Svensson-Arvelund, J., Lubitz, G.S. et al. Cancer vaccines: the next immunotherapy frontier. Nat Cancer 3, 911–926 (2022). https://doi.org/10.1038/s43018-022-00418-6 Pardi, N., Hogan, M., Porter, F. et al. mRNA vaccines — a new era in vaccinology. Nat Rev Drug Discov 17 , 261–279 (2018). DOI: https://doi.org/10.1038/nrd.2017.243 Project Gallery

  • The Gut Microbiome | Scientia News

    Delving into the impacts of gut bacteria on health Facebook X (Twitter) WhatsApp LinkedIn Pinterest Copy link The Gut Microbiome 11/07/25, 09:58 Last updated: Published: 04/04/24, 16:41 Delving into the impacts of gut bacteria on health Inflammatory Bowel Disease The microbiome is hugely important to human health, and has been shown to beneficial to digestion, the immune system and even our mental health when in good working condition. However, disruption to the balance of the microbial flora has likewise been associated with multiple diseases and poor general health. Dysbiosis, or a poor balance, of human microbiome communities has been implicated in a wide range of disease, such as cardiovascular disease, chronic inflammation, obesity and even mental health issues. A diverse and well-balanced microbial community is important for disease prevention, however modern over usage of antibiotics as well as poor diets low in dietary fibre and high in artificial additives can lead to compromised communities dominated by single pathogenic strains of bacteria. The human microbiome plays a critical role in overall health, from providing valuable metabolites to aiding the immune system. Friendly commensal bacteria colonise major regions in our gut, with characteristic diverse communities of microbes inhabiting them. These microbes occupy these niches and outcompete pathogenic organisms, actively preventing infection and disease. In this article we will be specifically looking into the link between the gut microbiome and Inflammatory Bowel disease (IBD), as this is currently one of the most well researched cases of a causal relationship between the microbiome and disease state. Dysbiosis and Disease state Disruption of the gut flora is associated with painful inflammation of the gastrointestinal tract, diagnosed as IBD. Crohn’s disease and Ulcerative Colitis are conditions under the umbrella term of IBD and cause painful swelling and eventually ulcers in the gastrointestinal tract. The exact cause of IBD remains unclear, with the true cause likely a combination of genetics, environmental factors and the gut microbiome. Evidence has come to light that shows a link between disease state and the gut dysbiosis, where they influence each other and are potentially both each other’s cause and effect. Successfully treating IBD has proved difficult; medications focus on alleviating inflammation or other symptoms as antibiotics have shown limited effectiveness in curing the disease. Antibiotics have even been suggested to weaken the immune system long-term, as evidence suggests that antibiotic clearance of commensal bacteria can provide opportunity for pathogenic strains to establish themselves. Medical treatments destabilizing the microbiome can lead to a change in overall metabolism and chronic Clostridium difficile infection. When colonization resistance is compromised there is more opportunity for single bacteria to dominate the community, with antibiotic-associated diarrhoea a common side effect associated with antibiotic induced dysbiosis. Microbial-based therapies Recently potential therapies pivoted to target the microbiota, as reinstating a healthy colony of gut microbials should alleviate the cause of IBD. Previous treatments relied on antibiotics followed by a course of probiotics; however, this has had variable levels of success as the antibiotic treatment can further reduce bacterial diversity in the gut. Probiotics have limited effectiveness in alleviating symptoms; any effect is transient as no probiotic microbial strains are detectable after 2 weeks of stopping intake. In modern clinical trials we have already seen positive results from microbiome treatments in clearing C. difficile infection, such as faecal microbiota transplantation (FMT) therapy. FMT uses faeces from a healthy donor, which are processed and delivered to the gastrointestinal tract of patients. Faeces contain a high microbial load, with up to 1011 bacterium per gram and multiple archaea, fungi and viruses that could not be delivered orally in a probiotic form. Success in resolving dysbiosis through FMT is variable but shows more promise than other therapies. Future Potential Specific forms of IBD such as ulcerative colitis (UC) was first treated with FMT in 1989, with patients reducing medications within a week of enema treatments and remaining clinically disease free for multiple years after treatment. More recent trials have had more variable levels of remission, suggesting donor compatibility, disease prevalence and engraftment of the microbiota all factor into the success of FMT. There is potential in this therapy, as FMT has proved more robust than previous treatments for IBD. Modern research into the relationship between disease and gut flora has come a long way in a relatively short time and shows there is much potential for future research in this area. Written by Charlotte Jones Related articles: the power of probiotics / Crohn's disease / the dopamine connection / Diverticular disease / Nanoparticles on gut health / Microbes in charge Project Gallery

bottom of page