top of page
Image by Manuel

Are pandemics becoming less severe?

Last updated: 13/11/24

 

Ever since the World Health Organisation (WHO) declared COVID-19 a pandemic in March 2020, many people have become more aware of future pandemics and best management strategies for these health disasters. For example, an online article from 2022 discussed ways to prepare for the next pandemic such as surveilling zoonotic diseases and planning for faster vaccine production; these can be effective in overcoming another pandemic in the future, though it is important to consider factors that may inhibit the above strategies aside from exacerbating future pandemics. With this said, this article will compare the reasons for pandemics becoming less severe and the reasons why they can become worse. 

Beginning with the positives, there are reasons why future pandemics may be less serious compared to previous ones like the Spanish Flu (1918-1920), which killed approximately 500 million people or the Black Death (1346-1353), which eliminated half of Europe’s population. Firstly, vaccinations reduced the spread of and prevented serious symptoms of many infectious diseases ranging from the eradicated smallpox to the seasonal influenza. Therefore, undermining the success of vaccines during pandemics is not ideal since this has negative consequences, mainly prolonging pandemics and killing more people. 

Secondly, there are antimicrobial treatments for a person infected with either a viral, bacterial, protozoal, or fungal infection. For instance during World War 2, penicillin has decreased bacterial pneumonia’s death rate from 18% to 1% in soldiers as well as saving 14% of the UK’s injured soldiers. Therefore, this event prevented bacterial spread and a potential pandemic that could have occurred without penicillin or other antibiotics. Another important treatment is for malaria. A review and meta analysis from Ethiopia showed that for artemether-lumefantrine in 10 studies involving 1179 patients, 96.7% did not have a fever and 98.5% did not have the malaria parasite after they were treated for 3 days. Again, artemether-lumefantrine with other antiparasitic drugs reduced the possibility of a malarial pandemic. 

Additionally, there are non-medical interventions that may decrease the severity of pandemics. For instance, a cross-panel analysis discovered that enforcing a lockdown during the COVID-19 pandemic saw new cases declining around 10 days after execution and this benefit grows after 20 days of the lockdown. Similarly, a review highlighted that social distancing of more than 1 metre between individuals led to reduced COVID-19 transmission risk by 5 times while the impact of protection two-fold for each extra 1 metre. Considering both of these methods, re-using them for future pandemics can reduce infectious disease spread in combination with vaccinations and antimicrobial drugs. 

On the other hand, it is crucial to consider the counter argument of why pandemics may worsen in the future. To illustrate, there is the possibility that diseases could resurge into more fatal variants similar to COVID-19, which lead to more deaths and vaccines becoming less effective. Alternatively, there may a current contagious pathogen that can combine with another one to form a new disease; this is how HIV/AIDS become virulent since the 1980s to present day as researchers uncovered that the virus collaborates with non-viral diseases like malaria and tuberculosis and viral diseases such as hepatitis C to harm/kill the patient. These instances can occur for viral pathogens along with other types (protists, bacteria and fungi). 

As for non-viral pathogens, it is likely that future pandemics originate from them with a review discussing bacteria like MRSA or ones causing water-borne and unsanitary food infections infecting humans and animals. It elaborated that multi-drug resistant bacteria would be arduous to destroy opposed to non-resistant ones, resulting in higher: mortalities, medical logistics, costs and hospitalisations. Going back to penicillin with other antibiotics, although it was used since World War 2 for bacterial infections, resistance towards them has exponentially increased whereby countless types of bacteria overpower their effects because antibiotics have been overprescribed and their use in agriculture has made bacteria stronger. 

US map

Another reason to consider pandemics becoming worse is the counter-effectiveness of lockdowns. An article stated that comparing them between countries is insufficient because there is a lack of evidence for them tackling COVID-19 and the 1918-1920 Spanish Flu. Also, it found that it is expensive to enforce them and suggested a 20 fold death rate, indicating that a cost-benefit analysis is needed before utilising lockdowns to stop the spread of infectious diseases. Additionally, COVID-19 not only had detrimental impacts on health, it influenced non-health factors such as economics, culture and politics. For example, lots of Iranian people went to crowded places and business centres as the government did not have the finances during their lockdown to protect citizens from the virus. 

Overall, everyone should collaborate to prepare for the inevitability of future pandemics because historically, using a multitude of methods: lockdowns, vaccines, social distancing and antimicrobial drugs in order to minimise the time span and consequences of the pandemics. Referring back to deadliest pandemics from the past like the Black Death and Spanish Flu, it is our responsibility to prevent history from repeating itself.

Written by Sam Jarada 

Related article: Rare zoonotic diseases

REFERENCES

Sridhar D. Five ways to prepare for the next pandemic. Nature. 2022 Oct 26;610(7933):S50–0.

 

Jarus O. 20 of the worst epidemics and pandemics in history. livescience.com. 2020 Mar 3.

 

Rayner C. How the discovery of penicillin has influenced modern medicine - The Oxford Scientist. The Oxford Scientist. 2020 June 1. 

 

Ayalew MB. Therapeutic efficacy of artemether-lumefantrine in the treatment of uncomplicated Plasmodium falciparum malaria in Ethiopia: a systematic review and meta-analysis. Infectious Diseases of Poverty. 2017 Nov 15;6(1).

 

Alfano V, Ercolano S. The Efficacy of Lockdown Against COVID-19: A Cross-Country Panel Analysis. Applied Health Economics and Health Policy. 2020 Jun 3;18(4):509–17.

 

Sun KS, Lau TSM, Yeoh EK, Chung VCH, Leung YS, Yam CHK, et al. Effectiveness of different types and levels of social distancing measures: a scoping review of global evidence from earlier stage of COVID-19 pandemic. BMJ Open. 2022 Apr 1;12(4):e053938. 

 

Singer M. Pathogen-pathogen interaction. Virulence. 2010;1(1):10–8.

 

Salazar CB, Spencer P, Mohamad K, Jabeen A, Abdulmonem WA, Fernández N. Future pandemics might be caused by bacteria and not viruses: Recent advances in medical preventive practice. International Journal of Health Sciences. 2022;16(3):1–3. 

 

Ventola CL. The Antibiotic Resistance crisis: Part 1: Causes and Threats. P & T : a peer-rev10.

 

Yanovskiy M, Socol Y. Are Lockdowns Effective in Managing Pandemics? International Journal of Environmental Research and Public Health. 2022 Jul 29;19(15):9295.

 

Yoosefi Lebni J, Abbas J, Moradi F, Salahshoor MR, Chaboksavar F, Irandoost SF, et al. How the COVID-19 pandemic effected economic, social, political, and cultural factors: A lesson from Iran. International Journal of Social Psychiatry. 2020 Jul 2;67(3):002076402093998.

bottom of page